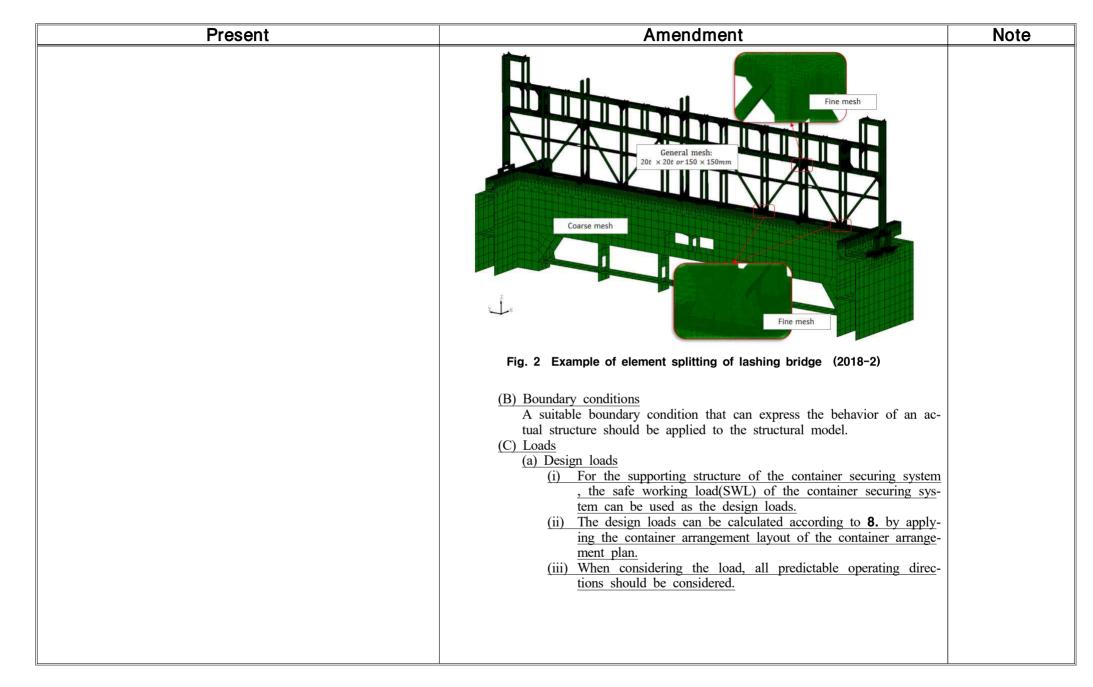
Amendments of Guidance

(External opinion inquiry)

Pt. 7 Ships of Special Service

Annex 7-2 Guideline for Guidance for the Container Securing Arrangements

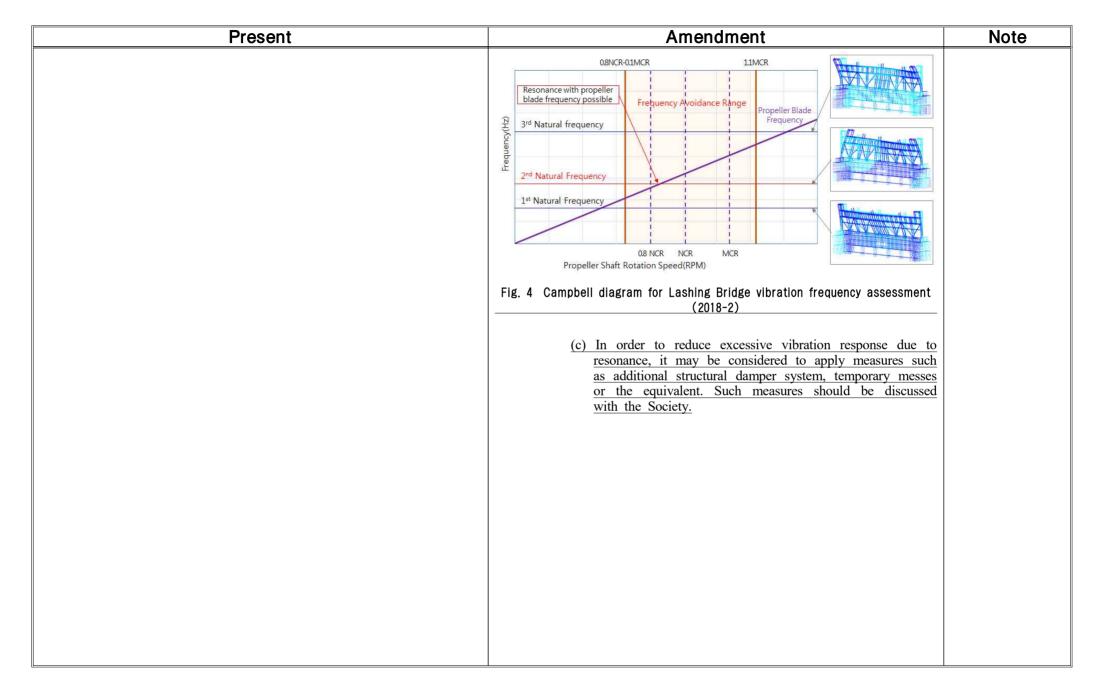


2018. Hull Rule Development Team

Present	Amendment	Note
Annex 7-2 Guidance for the Container Securing Arrangements	Annex 7-2 Guidance for the Container Securing Arrangements	
1. ~ 3. <omission></omission>	1. ~ 3. <same as="" current=""></same>	
4. Arrangements for stowage on exposed decks without cell guides	4. Arrangements for stowage on exposed decks without cell guides	
 (1) ~ (3) <omission></omission> (4) Containers in more than three tiers (A) ~ (H) <omission></omission> (1) If the carriage of one or more tiers of 20 ft containers being overstowed with at least one tier of 40 ft containers, so called 'Russian Stow Arrangement' is desired, the following requirements apply. (a) At the 20 ft gap the containers are to be secured by means of midlocks, whereas the fore and aft ends are to be secured by twistlocks and if necessary supplemented by lashing rods. (b) The 40 ft overstow container is to be secured by twistlocks and lashing rods. (b) The 40 ft overstow container is to be assessed in a two step procedure as follows: (i) For location at the 40 ft ends the entire mixed stack is to be considered as a 40 ft stack. The weights of the 40 ft containers are to be taken as the basis for the calculation at each tier. (ii) For the location of the 20 ft tiers at the mid bay position the assessment is to be carried out as for an unlashed stack. The 40 ft overstow container does not need to be taken into consideration. 	 (1) ~ (3) <same as="" current=""></same> (4) Containers in more than three tiers (A) ~ (H) <same as="" current=""></same> (I) If the carriage of one or more tiers of 20 ft containers being overstowed with at least one tier of 40 ft containers, so called 'Russian Stow Arrangement' is desired, the following requirements apply. (a) At the 20 ft gap the containers are to be secured by means of midlocks <u>or full automatic twistlocks</u>, whereas the fore and aft ends are to be secured by twistlocks and if necessary supplemented by lashing rods. (2018-2) (b) The 40 ft overstow container is to be secured by twistlocks or if necessary with a combination of twistlocks and lashing rods. The stack is to be assessed in a two step procedure as follows: (i) For location at the 40 ft ends the entire mixed stack is to be considered as a 40 ft stack. The weights of the 40 ft containers are to be taken as the basis for the calculation at each tier. (ii) For the location of the 20 ft tiers at the mid bay position the assessment is to be carried out as for an unlashed stack. The number of stacks should be determined taking into account the deformation of the <u>hatch cover</u>. The 40 ft overstow container does not need to be taken into consideration. (2018-2) 	
5. ,6 <omission></omission>	5. ,6 <same as="" current=""></same>	

Present	Amendment	Note
 5. Ship structure (1) General (A) The ship structure and hatch covers in way of fixed cargo securing fittings are to be strengthened as necessary. (B) A breakwater may be required. (2) Strength (A) The SWL of the fixed cargo securing fitting is to be used as the design load when approving the weld attachments and the support structure of the fixed cargo securing fitting. (B) For container securing arrangements, the design load when approving the weld attachment and supporting structure is to be calculated in accordance with 8. (C) When considering the loads, all expected directions of operation are to be taken into account. (D) Stresses induced in the weld attachments, supporting structure, cell guides, lashing bridges and other structures serving as fixed cargo securing points, determined using the design loads as defined in (A) to (C), are not to exceed the permissible values given in Table 18. 	 7. Container support structure (2018-2) General A) Drawings for lashing bridges, cell guides, container supports and other container support structures are to be submitted to the Society for approval. B) The lower part of fixed container securing system of hatch covers and hull structures should be suitably reinforced FE(Finite Element) method or Grillage analysis can be used for the strength evaluation. The modeling and evaluation should be of a gross scantling, and the element size should be such that the behavior of the structure can be faithfully reproduced. (D) The evaluation of the hatch cover strength is to be in accordance with the requirements in Pt 4, Ch 2 of the Rules. (2) Structural strength evaluation (A) Structure modelling (a) Model extent (b) The model for strength evaluation should include at least hull structure until first stringer in vertical direction and one web frame in longitudinal direction from container support structure. Generally both port and starboard of the lashing bridges on fore part, midship and after part should be carried out. And addition strength evaluations may be required when deemed necessary by the Society. (b) FE model (i) The FE model follows the right-handed coordinate system as shown in Table 1. 	

Present		Am	endment	Note
	Table 1 Cool	rdinate system	(2018-2)	
	Coordinate	Direction	Note	
	X	longitudinal	positive forwards	
	У	transverse	positive to port from centerline	
	Z	vertical	positive to upward from base line	
		size of the $20t \times 20t$ or the thinnest) The element greater than small to be ture and to members wh direction sho minimum re	plate elements should be used and m lashing bridge should be approxima 150 mm×150 mm which is smaller.(t plate thickness in mm). t size of fine mesh area should not 50×50 mm and should be sufficient able to represent the shape of the stat limit stress concentration. In general, nich have a stress variation in the de ould be meshed into 3 sub depths. The equired element size of fine mesh at less than the thickness of the plate.	tely is be ntly uc- the ppth The


Present	Amendment	Note
	(b) Combination of design loads (i) Lashing bridge The following combinations of design loads shall be consid- ered: - containers loaded in both forward and aft bays of lashing bridge(transverse load maximum condition) - containers loaded in the forward bay of the lashing bridge(for- ward direction maximum load condition) - containers loaded in the aft bay of the lashing bridge(aft direc- tion maximum load condition)	
	The design loads should be the value calculated according to the container stowage arrangement. Where SWLs are used as design loads, the values shown in Fig.3 can be used.	
	EXTERNAL LASHING INTERNAL LASHING	
	SINGLE DOUBLE 2TIERS 2TIERS SINGLE DOUBLE 2TIERS 2TIERS LASHING LASHING (1) LASHING (2) LASHING LASHING (1) LASHING (1) LASHING (2)	
	Fig.3 Examples for load distribution of SWLs as design loads (2018-2)	

Present	Amendment	Note
	(ii) Cell guide The design load combination shown in Table 2 below should be considered and the conditions for loading the high cubic container should be considered. For cell guides installed on the deck, wind loads should be taken into account. Table 2 Design load combination of cell guide (2018-2)	
	Load condition Transverse load Longitudinal load Vertical load	
	Load combination apply not apply 1 not apply	
	Load combination 2 not apply apply not apply	
	wind loads should be considered. Table 3 Design load combination of container stanchion (2018-2) Load condition Transverse load Longitudinal load Vertical load	
	Load combination 1 apply(inside) not apply apply(tension)	
	Load combination 2apply(outside)not applyapply(compression)	
	(iv) Other container support structures It shall be deemed appropriate by the Society.	

nt	Amendm	nent	Note
5	(D) Permissible stress (a) Stresses of container support structures are not to exceed the permissible values given in Table 4 .		
Permissible stress (N/m^2)	Table 4 Permissible stress value	s <i>(2018-2)</i>	
0.67 σ ₀	Stress	Permissible stress (N/m^2)	
0.4 σ_0	Normal stress (bending, tension, compression)	$0.8 \sigma_0$	
$0.86 \sigma_0$	Shear stress	$\underline{0.46} \sigma_0$	
m ²)	Combined stress	<u>0.9</u> $\sigma_0^{(1)}$	
	the members with stress cording to Pt13, Ch8 of $\eta_{act} < \eta_a$ $\eta_{act} < :$ Buckling usage $\underline{\eta_{act}} :$ Buckling usageSec5 [2.2.1] an $\underline{\eta_a}$: allowable buckling plate of platform	 derived from the FE analysis ac- the Rule. e factor obtained from Pt13 Ch8 d [3.1] of the Rule ling usage factor orm : 0.9 	
	Permissible stress (N/m ²) 0.67 σ_0 0.4 σ_0 0.86 σ_0	(D) Permissible stress (a) Stresses of container su the permissible values g 0.67 σ_0 0.67 σ_0 0.86 σ_0 n ²) Combined stress (bending, tension, compression) Stress 0.86 σ_0 n ²) Combined stress (bending, tension, compression) Shear stress Combined stress (E) Buckling strength (a) The buckling usage Sec5 [2.2.1] an $\eta_{act} < \eta_{ac}$ gente of platfe	(D) Permissible stress (a) Stresses of container support structures are not to exceed the permissible values given in Table 4. Permissible stress (N/m ²) 0.67 σ_0 0.4 σ_0 0.86 σ_0 n ²) Combined stress 0.86 σ_0 n^2) Combined stress 0.86 σ_0 (bending, tension, compression) 0.86 σ_0 (c) Shear stress 0.9 $\sigma_0^{(1)}$ Combined stress σ_p : specified minimum yield stress (N/m ²) (f): The permissible stress may be alleviated up to 1.2 σ_0 for stress concentration part of fine mesh area. (E) Buckling strength (a) The buckling strength evaluation should be performed for the members with stress derived from the FE analysis according to Pt13, Ch8 of the Rule. $\eta_{act} < \eta_{ac}$ $\eta_{act} < \eta_{ac}$ Buckling usage factor obtained from Pt13 Ch8 See5 [2.2.1] and [3.1] of the Rule

 (f) Stiffness of lashing bridge (a) The maximum transverse displacement of the lashing bridge load operating point should not exceed the following values: 1 liter lashing bridge : 10 mm 2 ure tashing bridge : 25 mm more than 3 titer lashing bridge : 35 mm (1) Vibration analysis (A) TE model (a) The lashing bridge should be properly designed so that the natural frequencies of the structure avoid resonance with the excitation frequencies of the structure avoid resonance with the excitation frequencies of the engine and the properly. (b) Where the ship is expected to operate with no containers secured to the lashing bridge should be considered. (c) In general, FE model used for the structure avoid resonance with the excitation frequencies of the antimers secured to the lashing bridge should be considered. (c) In general, FE model used for the structure avoid resonance may be used. The wibration response of the lashing bridge should be considered. (c) In general, FE model used for the structure avoid method properly resold. In particular, the lashing bridge of the antermost part is more likely to whate because it is close to the propeller and main engine compartment, so the wibration response should be evaluated and englobed hull structure FE model is avoidable and a global hull model analysis is to be carried out, it is recommended hull structure FE model is available and a global hull model analysis.

Present	Amendment	Note
	 (B) Natural frequency assessment (a) The calculated natural frequencies of the global behaviour of the lashing bridge are to satisfy the following requirements: (i) For lashing bridge structures located aft of the main machinery space, the calculated natural frequencies of the lashing bridge should not be in the range of the propeller blade frequencies associated with: lower limit 80% NCR minus 10% of MCR higher limit MCR plus 10% MCR NCR : the Normal Continuous Rating. In the event that the ship is expected to operate for a prolonged period at a speed lower than that provided by operating at the NCR, then the shaft speed consistent with that speed should be used instead of the NCR. MCR : the Maximum Continuous Rating (ii) For lashing bridge structures adjacent to the engine room of ships with slow speed diesel engines, the calculated natural frequencies associated with large engine forces. (b) A Campbell diagram may be used to assess the potential resonant frequencies. An example Campbell diagram is shown in Fig. 4. At the intersection between the first order propeller blade frequency line and the line of natural frequencies of a mode, a possible resonant condition can be found. 	

Present	Amendment	Note
8. Determination and application of forces	8. Determination and application of forces	
(1) Symbols and definitions	(1) Symbols and definitions (2018-2)	
(A) The co-ordinate system used in this Annex is defined with respect to the right-hand co-ordinate system shown in Fig 2 ,		
with the origin at the centre of motion. For ship motions and		
accelerations defined in this Annex, the sign convention		
shown in Fig 2 is adopted. The roll, pitch and yaw motions are defined positive clockwise as shown in the Figure.		
Z		
4		
Heave		
Yaw Yaw		
y Sway Roll		
Pitch		
Om		
Fig 2 Co-ordinate system and sign convention of motions		
(B) The following definitions are applicable to this Annex, except	(A) Definitions and symbols of terms are as follows. (Unless oth-	
where otherwise stated:	erwise specified, are subject to the provisions of Ch. 4 of of New Container rules).	
a_0 : accereration cofficient, is as following formulae :		
	a_0 : acceleration coefficient, is as following formulae	
$a_0 = f_c (1.58 - 0.47 C_b) \left(\frac{2.4}{\sqrt{L_{BP}}} + \frac{34}{L_{BP}} - \frac{600}{L_{BP}^2} \right) \text{ (m/sec}^2)$: $a_0 = (1.58 - 0.47 C_B) \left(\frac{2.4}{\sqrt{L_{BP}}} + \frac{100}{L_{BP}} - \frac{600}{L_{BP}^2} \right)$	
$f_c = -\frac{L_{BP}^2}{1000000} + 0.0011L_{BP} + 0.8064 \text{ for } L_{BP} > 240$		
m = 1.0 for $L_{BP} \le 240$ m		
a_{heave} : acceleration of ship heave motion. is as fol-	a_{heave} : acceleration of ship heave motion. is as fol-	
lowing formulae	lowing formulae	
$\underline{a_{heave}} = f_h a_0 g \text{ (m/sec}^2)$	$a_{heave} = 0.5 f_b a_0 g \text{ (m/sec}^2)$	

Present	Amendment	Note
a_{sway} : acceleration of ship sway motion, is as fol-	a_{sway} : acceleration of ship sway motion, is as fol-	
lowing formulae	lowing formulae	
$a_{sway} = 0.56 \ a_0 g \ ({ m m/sec}^2)$	$\underline{a_{sway}} = 0.29 a_0 g (\mathrm{m/sec}^2)$	
a_{surge} : acceleration of ship surge motion, is as fol-	a_{surge} : acceleration of ship surge motion, is as fol-	
lowing formulae	lowing formulae	
$a_{surge} = a_0 g \left(\frac{30}{L_{BP}} + 0.17 \right) (\text{m/sec}^2)$	$\underline{a_{surge}} = 0.18a_0g$ (m/sec ²)	
$\frac{u_{surge} - u_0 g}{L_{BP}} \left(\frac{1}{L_{BP}} \right) \left(\frac{1}{1000} \right) \left(\frac{1}$	a_{roll} : acceleration of ship roll motion, is as follow-	
	ing formulae	
	$a_{roll} = heta \left(\frac{2\pi}{T_{ heta}} ight)^2 (m/\sec^2)$	
	a_{pitch} : acceleration of ship pitch motion, is as fol-	
	lowing formulae	
	$a_{pitch} = \left(\frac{3.1}{\sqrt{gL}} + 1.4\right) \phi \left(\frac{2\pi}{T_{\phi}}\right)^2 (\text{m/sec}^2)$	
a_i : breadth of the i-th container (m), (see Fig 3)	a_i : distance between center of container corner	
	casting(m), (see Fig 5)	
a_x , a_y , a_z : acceleration of x, y, z -direction (m/sec ²)	a_x , a_y , a_z : acceleration of x, y, z -direction (m/sec ²)	
b_i, c_i : length and height of the i-th container (m),	b_i, c_i : length and height of the i-th container (m),	
(see <u>Fig 3</u>)	(see <u>Fig 5)</u>	
d_i : height of the i-th container fitting between	d_i : height of the i-th container fitting between	
containers in way of vertical direction (m), (see	containers in way of vertical direction (m), (see	
<u>Fig 3)</u>	Fig 5)	
f_h , f_p , f_r : route specific reduction factor for heave,	f_h , f_p , f_r : route specific reduction factor for heave,	
pitch, roll motion,(see <u>Table 5</u>)	pitch, roll motion, (see Table 8)	
g : acceleration due to gravity and is to be taken	g : acceleration due to gravity and is to be taken	
as 9.81 m/s^2	as 9.81 m/s^2	
$h_i = c_i + d_i$, (see Fig 3)	$h_i = c_i + d_i$, (see Fig 5)	

Present	Amendment	Note
<i>i</i> : index of i-th container in way of vertical di-	<i>i</i> : index of i-th container in way of vertical di-	
rection	rection	
k_r : radius of roll gyration(m), generally <u>0.39B</u>	k_r : radius of roll gyration(m), generally <u>0.35B</u>	
ℓ_i : <omission></omission>	ℓ_i : <same as="" current=""></same>	
n : <omission></omission>	n : <same as="" current=""></same>	
x : <omission></omission>	x : <same as="" current=""></same>	
y : <omission></omission>	y : <same as="" current=""></same>	
z : <omission></omission>	z : <same as="" current=""></same>	
A_i : <omission></omission>	A_i : <same as="" current=""></same>	
$\underline{C_{a1 \sim 5}}$: dynamic motion combination factor of each	$C_{XS}, C_{YS}, C_{ZH}, C_{YR}, C_{ZR}, C_{XP}, C_{ZP}$: dynamic motion	
ships' motion, (see Table 2)	combination factor of each ships' motion, (see	
	Table 5)	
C_c :	C_c :	
C_r , C_p : dynamic motion combination factor for roll,	C_{YG} , C_{XG} : dynamic motion combination factor for roll,	
pitch motion, (see Table 2)	pitch motion, (see Table 5)	
C_{yf} , C_{zf} : dynamic coefficient for at the location of	C_{yf} , C_{zf} : dynamic coefficient for at the location of	
x-direction, (see <u>Table 3</u>)	x-direction, (see <u>Table 7</u>)	
E_i : elongation of lashing rod at the bottom of i	E_i : elongation of lashing rod at the bottom of i	
-th container (kN/mm^2) (see Table 7)	-th container (kN/mm^2) (see Table 10)	
	<i>GM</i> : metacentric height (m).	
K_i : a stiffness of lashing rod at the bottom of i	K_i : a <u>transverse</u> stiffness of lashing rod at the	
-th container, is as following formulae	bottom of <i>i</i> -th container, is as following for-	
$K_i = \frac{E_i A_i \cos^2 \theta_i}{\ell_i}$	mulae	
$K_i = \ell_i$	$K_i = \frac{E_i A_i \cos^2 \theta_i}{\ell}$	
	$K_i = \ell_i$	

Present	Amendment	Note
K_c : spring constant of container's wall (see Table	K_c : spring constant of container's wall (see Table	
<u>6)</u>	<u>9)</u>	
L_{BP} : length between fore and after perpendiculars of	L_{BP} : length between fore and after perpendiculars of	
the ship(m)	the ship (m)	
O_m : centre of motion, to be taken on the centreline at	\underline{R} : centre of motion, to be taken on the centreline at	
the longitudinal centre of flotation of the ship	the longitudinal centre of flotation of the ship	
and at a distance $\min\left(\frac{D}{4} + \frac{T_{LC}}{2}, \frac{D}{2}\right)$ above the	above the keel, $R = \frac{1}{2}(0.35B + 1.4T_{LC})$	
keel	CR : the rating, or maximum operating gross weight	
\underline{R} : the rating, or maximum operating gross weight	for which the container is certified, and is equal	
for which the container is certified, and is equal	to the tare weight plus payload of the container	
to the tare weight plus payload of the container	(ton)	
(ton)	T_{LC} :	
T_{LC} :	T_{LC} . T_i :	
	T_{θ} , T_{ϕ} : full period of pitch and roll of the ship (sec)	
<u>T_P</u> , <u>T_R</u> : full period of pitch and roll of the ship (sec)	V_w : wind speed (m/sec). For ships with an unre-	
V_w : wind speed (m/sec). For ships with an unre-	v_w . while speed (m/sec). For sings with an uncer- stricted worldwide service area notation a wind	
stricted worldwide service area notation a wind		
speed of 36 m/sec is to be applied.	speed of 36 m/sec is to be applied <u>at least</u> .	
	W_i :	
α : coefficient of wind force, (see <u>Table 2</u>)	α : coefficient of wind force, (see Table 5)	
θ_i : lashing angle of lashing device at the bottom of	θ_i : lashing angle of lashing device at the bottom of	
<i>i</i> -th container, (see Fig 8)	<i>i</i> -th container, (see Fig 9)	
Θ : Angle of roll (radian)	θ , ϕ : Angle of roll (radian), Angle of pitch (radian)	
Φ : Angle of pitch (radian)		

Present	Amendment	Note
(2) Acceleration of ship motion(A) The following six dynamic motion cases are to be considered;	(2) Acceleration of ship motion (2018-2)(A) The following six dynamic motion cases are to be considered;	
 HSVA : Vertical acceleration in head sea OSVA : Vertical acceleration in oblique sea BSRL : Roll motion in beam sea OSPA : Pitch acceleration in oblique sea BSHA : Heave acceleration in beam sea OSPH : Pitch motion in oblique sea 	 HSVA : Vertical acceleration in head sea OSVA : Vertical acceleration in oblique sea BSRL : Roll motion in beam sea OSPA : Pitch acceleration in oblique sea BSHA : Heave acceleration in beam sea OSPH : Pitch motion in oblique sea 	
For each dynamic motion case, combination factors, shown in Table 2 , are used for to calculate the acceleration. These factor sets represents an incoming wave crest or trough coming from either the port or starboard sides based on Equivalent Design Wave (EDW) that generates response values equivalent to the long-term response values of the critical load components for ship motion forces acting on containers.	For each dynamic motion case, combination factors, shown in <u>Table 5</u> , are used for to calculate the acceleration.	
(B) The ship motion angle and period for roll and pitch motions are given in <u>Table 3</u> . The accelerations, as below, are to be used to derive the forces for the container securing arrangements. Alternatively, the ship motion values may be derived by direct calculation methods using the same principles as those used to derive the Rule equations. The dynamic coefficients, C_{yf} and C_{zf} , are shown in <u>Table 4</u> considering influence of location in x-direction.	(B) The ship motion angle and period for roll and pitch motions are given in <u>Table 6.</u> The accelerations, as below, are to be used to derive the forces for the container securing arrangements. Alternatively, the ship motion values may be derived by direct calculation methods using the same principles as those used to derive the Rule equations. The dynamic coefficients, C_{yf} and C_{zf} , are shown in <u>Table 7</u> considering influence of location in x-direction.	
$a_{x} = -g \sin(C_{p} \Phi) + C_{a1} a_{surge} + C_{a5} \Phi \left(\frac{2\pi}{T_{p}}\right)^{2} \{z - O_{m}\}$ $a_{y} = g \sin(C_{r} \Theta) + C_{yf} C_{a2} a_{sway} - C_{yf} C_{a4} \Theta \left(\frac{2\pi}{T_{R}}\right)^{2} \{z - O_{m}\}$	$\begin{aligned} a_{x} &= -C_{XG}g\sin\phi + C_{XS}a_{surge} + C_{XP}a_{pitch}(z-R) \\ a_{y} &= C_{YG}g\sin\theta + C_{yf}C_{YS}a_{sway} - C_{yf}C_{YR}a_{roll}(z-R) \\ a_{z} &= -g + C_{zf}C_{ZH}a_{heave} + C_{zf}C_{ZR}a_{roll} y - C_{zf}C_{ZP}a_{pitch}(x-0.45L) \end{aligned}$	
$a_{z} = 2019 + C_{zf}C_{a3}a_{heave} + C_{zf}C_{a4}\Theta\left(\frac{2\pi}{T_{R}}\right)^{2} y - C_{zf}C_{a5}\Phi\left(\frac{2\pi}{T_{P}}\right)^{2}$	$^{2}(x - 0.45L_{BP})$	
$ \begin{array}{c} \text{if } (x - 0.45L_{BP}) < 0.2L_{BP}, \\ (x - 0.45L_{BP}) = 0.2L_{BP} \end{array} \qquad \qquad \text{then} \\ \end{array} $		

Present	Amendment	Note
 (C) The sea route specific reduction factors for each dynamic component are shown in <u>Table 5</u>. The route specific reduction factor is derived from the long-term response analysis with design life 20 years for the various container ship hull form considering environmental conditions on the route. if route pattern is extraordinary, our society may consider for the factor. Specific route examples refer to Appendix 2 (D) Wind forces are generally to be based on a maximum wind speed of 36 m/sec, acting on the outboard container stack. Wind forces are to be applied increasing ways of transverse force. 	 (C) The sea route specific reduction factors for each dynamic component are shown in Table 8. The route specific reduction factor is derived from the long-term response analysis with design life 20 years for the various container ship hull form considering environmental conditions on the route. If route pattern is extraordinary, the factor may be determined in consultation with the Society. Specific route examples refer to Appendix 2 (D) Wind forces are generally to be based on a maximum wind speed of 36 m/sec. Wind forces are to be applied increasing ways of transverse force. (E) If a 40ft container is loaded on the outermost stack and 45ft / 48ft / 53ft container is loaded on the inner stack, the wind forces on the longitudinal protrusion is not applied. (F) If the height difference between the top of the container to which the wind forces are applied and the center of the container of the inner stack is less than 1.9 m, wind forces are not applied. For the top container on the inner stack, a wind forces of 80% is to be considered. (refer Fig. 6) 	

		Accelleration					A	ngle	W
		Surge	Sway	Heave	Roll	Pitch	Roll	Pitch	Wind
		C_{a1}	C_{a2}	C_{a3}	C_{a4}	C_{a5}	C_r	C_p	α
	1	-0.5	0	0.35	0	-1.0	0	0.9	0
	2	-0.5	0	-0.35	0	-1.0	0	0.9	0
HSVA	3	0.5	0	-0.35	0	1.0	0	-0.9	0
	4	0.5	0	0.35	0	1.0	0	-0.9	0
	1	0.25	-0.15	0.4	0	-1.0	0	0.6	-0.5
OSVA	2	0.25	-0.15	-0.4	0	-1.0	0	0.6	-0.5
USVA	3	-0.25	0.15	-0.4	0	1.0	0	-0.6	0.5
	4	-0.25	0.15	0.4	0	1.0	0	-0.6	0.5
	1	0	0.1	-0.1	-0.4	0	1.0	0	1.0
BSRL	2	0	0.1	0.1	-0.4	0	1.0	0	1.0
DSKL	3	0	-0.1	0.1	0.4	0	-1.0	0	-1.0
	4	0	-0.1	-0.1	0.4	0	-1.0	0	-1.0
	1	0.25	-0.2	-0.25	0.1	1.0	-0.1	-0.6	-0.5
OSPA	2	0.25	-0.2	0.25	0.1	1.0	-0.1	-0.6	-0.5
USFA	3	-0.25	0.2	0.25	-0.1	-1.0	0.1	0.6	0.5
	4	-0.25	0.2	-0.25	-0.1	-1.0	0.1	0.6	0.5
	1	-0.1	-0.6	1.0	0.15	-0.1	-0.1	0	-1.0
BSHA	2	-0.1	-0.6	-1.0	0.15	-0.1	-0.1	0	-1.0
DSHA	3	0.1	0.6	-1.0	-0.15	0.1	0.1	0	1.0
	4	0.1	0.6	1.0	-0.15	0.1	0.1	0	1.0
	1	-0.6	0.4	0.4	-0.1	-1.0	0.1	1.0	0.5
OSPH	2	-0.6	0.4	-0.4	-0.1	-1.0	0.1	1.0	0.5
0511	3	0.6	-0.4	-0.4	0.1	1.0	-0.1	-1.0	-0.5
	4	0.6	-0.4	0.4	0.1	1.0	-0.1	-1.0	-0.5

Table 2 Dynamic motion combination factor (current)

				Aı	ngle	337. 1			
		Surge	Sway	Heave	Roll	Pitch	Roll	Pitch	Wind
					$\frac{C_{ZR}}{C_{YR}}$	$\frac{C_{XP}}{C_{ZP}}$	C_{YG}	\underline{C}_{XG}	α
	1	-0.3	0	0.3	0	-1.0	0	0.95	0
TEAL	2	-0.3	0	-0.3	0	-1.0	0	0.95	0
HSVA	3	0.3	0	-0.3	0	1.0	0	-0.95	0
	4	0.3	0	0.3	0	1.0	0	-0.95	0
	1	0.25	-0.15	0.4	0	-1.0	0	0.6	-0.5
OSMA	2	0.25	-0.15	0.4	0	-1.0	0	0.6	-0.5
OSVA	3	-0.25	0.15	-0.4	0	1.0	0	-0.6	0.5
	4	-0.25	0.15	-0.4	0	1.0	0	-0.6	0.5
	1	0	0.1	-0.1	-1.0	0	1.0	0	1.0
BSRL	2	0	0.1	0.1	-1.0	0	1.0	0	1.0
BSKL	3	0	-0.1	0.1	1.0	0	-1.0	0	-1.0
	4	0	-0.1	-0.1	1.0	0	-1.0	0	-1.0
	1	-0.25	-0.2	-0.3	0.2	1.0	0.1	-0.6	-0.5
OSPA	2	-0.25	0.2	-0.3	-0.2	1.0	-0.1	-0.6	-0.5
USPA	3	0.25	0.2	0.3	-0.2	-1.0	-0.1	0.6	0.5
	4	0.25	-0.2	0.3	0.2	-1.0	0.1	0.6	0.5
	1	-0.1	-0.6	1.0	0.15	-0.1	-0.1	0	-1.0
BSHA	2	-0.1	-0.6	-1.0	0.15	-0.1	-0.1	0	-1.0
взпа	3	0.1	0.6	-1.0	-0.15	0.1	0.1	0	1.0
	4	0.1	0.6	1.0	-0.15	0.1	0.1	0	1.0
	1	0.6	0.4	0.4	-0.1	-1.0	0.1	1.0	0.5
OSDII	2	0.6	0.4	-0.4	-0.1	-1.0	0.1	1.0	0.5
OSPH	3	-0.6	-0.4	-0.4	0.1	1.0	-0.1	-1.0	-0.5
	4	-0.6	-0.4	0.4	0.1	1.0	-0.1	-1.0	-0.5

 Table 5 Dynamic motion combination factor (2018-2)

Table 3 Ship motions (current)

Motion	Angle of radian	Periods (sec)
Roll	$\Theta = f_r \frac{\pi}{180} \left(\frac{4000 - 65 T_R}{B + 75} \right)$ but need not exceed 30°(0.524 rad) and is not to be taken less than $f_r \times 22^{\circ} (fr \times 0.384 rad)$	$T_R = \frac{2.0k_r}{\sqrt{GM}}$
Pitch	$\Phi = f_p \left(\frac{\pi}{180}\right) \left(\frac{6800}{L^{1.2}}\right)$ need not exceed 8°(0.14 rad)	$T_P = \sqrt{\frac{2.6\pi L}{g}}$

Table 6 Ship motions (2018-2)

Motion	Angle of radian	Periods (sec)
Roll	$\theta = f_r \frac{9000(1.25 - 0.025 T_{\theta})}{(B+75)\pi}$ but need not exceed 30°(0.524 rad) - <u>if B < 40m</u> , not to be taken less than $\frac{f_r \times 22^\circ (fr \times 0.384 rad)}{(fr \times 0.384 rad)}$ - <u>if B ≥ 60m</u> , not to be taken less than $\frac{f_r \times 18^\circ (fr \times 0.314 rad)}{(If the B is a median value, \theta is determined bylinear interpolation)$	$T_{\theta} = \frac{2.3\pi k_r}{\sqrt{g GM}}$
Pitch	$\underline{\phi = f_p 1350 L^{-0.94} \bigg\{ 1.0 + \bigg(\frac{15}{\sqrt{gL}} \bigg)^{1.6} \bigg\}}$	$T_{\phi} = \sqrt{\frac{2\pi L}{g}}$

Pre	esent		Ame	ndment		Not
Table 4 Dynamic coeffi	cient at the location	on of x-direction	Table7Dynamicx-direction(2018-2)	coefficient at th	ne location of	
x-location (x/L_{BP})	C_{yf}	C_{zf}	x-location (x/L_{BP})	C_{yf}	C_{zf}	
0.0	2.36	1.13	0.0	1.63		
0.1	2.11	1.12	0.0	<u>1.65</u> <u>1.46</u>	1.11	
0.2	1.91	1.07	0.2	1.32	<u>1.11</u> <u>1.05</u>	
0.3	1.80	1.00	0.2	<u>1.32</u> <u>1.24</u>	1.04	
0.4	1.74	0.98	0.4	1.24	1.02	
0.5	1.74	1.03	0.4	1.20	1.06	
0.6	1.79	1.14	0.6	1.23	1.18	
0.7	1.88	1.31	0.7	1.30	1.18	
0.8	2.02	1.42	0.8	1.39	1.40	
0.9	2.20	1.42	0.9	<u>1.52</u>	1.40	
1.0The interpolation is to be	2.43	1.43	1.0	1.68	1.40	
			80% 1.3m <1.9m ↓ 100% 100%	•	.9m 1.3m <1.9m 100%	
				Container not effected		

Present	Amendment	Note
(3) Resultant applied forces for unlashed stack	(3) Resultant applied forces for unlashed stack	
(A) The resultant forces derived for each container in the stack are assumed to be divided equally between the walls of the container as follows:	(A) The resultant forces derived for each container in the stack are assumed to be divided equally between the walls of the container as follows:	
<omission></omission>	<same as="" current=""></same>	
Q_i = wind force in one transverse end	Q_i = wind force in one transverse end	
$Q_{i} = \frac{\alpha 8.25 c b V_{w}^{2} \cos(C_{r}\Theta) \times 10^{-4}}{2} \text{ (kN)}$	$Q_i = \frac{\alpha 7.33 c b V_w^2 \cos(C_r \Theta) \times 10^{-4}}{2} \text{(kN)} $ (2018-2)	
(B) ~ (D) <omission> (4) <omission></omission></omission>	 (B) ~ (D) <same as="" current=""></same> (4) <same as="" current=""></same> 	
 (5) Resultant forces in an lashed condition (A) <omission></omission> (B) The resultant forces in the containers are not to exceed the allowable values given in (6). The lashing tensions are not to exceed the allowable working loads. 	 (5) Resultant forces in an lashed condition (A) <same as="" current=""></same> (B) The resultant forces in the containers are not to exceed the allowable values given in (6). The lashing tensions are not to exceed the allowable working loads. The effect of the additional tension by tilting should be taken into account in the top-layer external lashing of the closed ends without doors. However, additional tension may not be taken into consideration when a securing arrangement is used that does not cause additional tension due to application of a spring or the like. 	
	$\begin{split} \underline{\delta v_{act}} &= F_{NL_Trigger} / K_{v_upper_eff} \\ \underline{F_{NL_Trigger}} &= Lt_{i+1} - T_i \sin \theta_i \\ \underline{K_{v_upper_eff}} &= C_k \frac{E_i A_i \sin^2 \theta_i}{l_i} \end{split}$	
	C_k : nonlinear correction coefficient, is to be as speci- fied by the Society	
	δv_{max} : vertical seperation of twistlock between corner	
	castings, generally 20 mm.	

Present	Amendment	Note
	Note 1 In case of fully automatic twistlocks, a functional test report should be submitted to the Society. Where the vertical seperation on the test report exceeds 20 mm, the actual value should be applied. Note 2 If smaller value is to be used, the value may be used in consultation with the Society based on the functional test report.	
	$\begin{split} \delta v_{final} &= \max(0, \min(\delta v_{\max}, \delta v_{act})) \\ T_{i-final} &= T_i + \frac{K_{v_upper_eff} \delta v_{final}}{\sin \theta_i} \end{split}$	
	After calculating the tension of the uppermost external lashing using the above equation, the tension of the lower external lashing should be recalculated. At this time, the horizontal tension component of the uppermost external lashing is sub- tracted from the load model, and the horizontal stiffness of the uppermost external lashing is excluded from the stiffness model. Container loads should be recalculated after calculating the tension of all lashing rod. (2018-2)	
(C) <omission></omission>	(C) <same as="" current=""></same>	
(6) <omission></omission>	(6) Allowable forces on containers <same as="" current=""></same>	
9. <omission></omission>	9. <same :="" as="" current="" s.a.c=""></same>	
Appendix 1 Container Dimensions of each types <omission></omission>	Appendix 1 Container Dimensions of each types <s.a.c></s.a.c>	
Appendix 2 Examples of Specific Route <omission></omission>	Appendix 2 Examples of Specific Route <s.a.c></s.a.c>	
Appendix 3 Sample Calculation based on equations <omission> Ψ</omission>	Appendix 3 Sample Calculation based on equations <s.a.c> ψ</s.a.c>	