GUIDANCE RELATING TO THE RULES FOR THE CLASSIFICATION OF STEEL SHIPS

(Guidance Part 2 Materials and Welding)

-External Opinion Inquiry-

2019.10.

Machinery Rule Development Team

- Main Amendments -

(1) Enter into force on 1 January 2020 (the date of application for certification of material & welding or the contract date for ship construction)

• To reflect Request for Establishment/Revision of Classification Technical Rules

Present	Amendment	reason
CHAPTER 1 MATERIALS	CHAPTER 1 MATERIALS	
Section 1 General	Section 1 General	
101. Application [See Rule] 1. ~ 4. <omitted> <u>5. <new></new></u> 102. ~ 109. <omitted></omitted></omitted>	 101. Application [See Rule] 1. ~ 4. <sames as="" guidance="" present="" the=""></sames> 5. The high manganese austenitic steel for cargo tank in ships carrying liquefied natural gases in bulk or for fuel tank in ships using liquefied natural gases as fuels is to comply with Annex 2-11. (2020) 102. ~ 109. <sames as="" guidance="" present="" the=""></sames> 	Establishment/Revision
Section 2 ~ Section 8 <omitted> CHAPTER 2 WELDING <omitted></omitted></omitted>	Section 2 ~ Section 8 <sames as="" present<br="" the="">guidance> CHAPTER 2 WELDING <sames as="" present<br="" the="">guidance></sames></sames>	

Present	Amendment	reason
Annex 2-1 ~ Annex 2-10 <omitted></omitted>	Annex 2-1 \sim Annex 2-10 <omitted></omitted>	
Annex 2-11 High manganese austenitic steel <new></new>	Annex 2-11 High manganese austenitic steel	
	 1. Application (1) This Guidance applies to the high manganese austenitic steel plate(herein-after referred to as "high manganese austenitic steel") for cargo tank in ships carrying liquefied natural gases in bulk or for fuel tank in ships using liquefied natural gases as fuels. (2) The high manganese austenitic steel used for purposes other than (1) may be applied this Guidance with the approval of the Society. (3) The requirements other than those specified in this Guidance are comply with the requirements specified in Pt 2, Ch 1, 301. of the Rules. 	Establishment/Revision of Classification Technical Rules(MRD4800-75-20
	 <u>(1) High manganese austenitic steel is the steel with a high amount of manganese in order to retain austenite as its primary phase at atmospheric and service temperature.</u> (2) Controlled cooling is a method of cooling from high temperature in accordance with designed cooling rate. 	
	3. Manufacturing process	
	 (1) Where the high manganese austenitic steel plates are manufactured from the continuous casting slabs, the maximum thickness for approval is to be determined, as a rule, with the roll ratio of 6 as standard. However, upon consideration of the manufacturing process, the roll ratio may be reduced to <u>4</u>. (2) The grade, thickness, deoxidation practice and chemical composition are to comply with the requirements given in Table 1. 	
	Table 1 Grade, Thickness, Deoxidation Practice and Chemical Composition	_
	Thickne Deoxi dation Chemical Composition (%)	
	$\frac{\underline{Grade}}{\underline{t(mm)}} \begin{array}{c c} \underline{ss,} \\ \underline{t(mm)} \\ \underline{e} \end{array} \begin{array}{c c} \underline{C} \\ \underline{Si^{(1)}} \\ \underline{Mn} \end{array} \begin{array}{c c} \underline{P} \\ \underline{S} \end{array} \begin{array}{c c} \underline{Si} \\ \underline{Cu} \end{array} \begin{array}{c c} \underline{Cr} \\ \underline{N} \end{array} \begin{array}{c c} \underline{B} \\ \underline{B} \end{array}$	
	$\frac{\text{HMN4}}{\underline{0}} \stackrel{6 \le t \le 30}{\underline{0}} \stackrel{\frac{\text{Killed}}{\text{and}}}{\underline{\text{Fine}}}_{\underline{\text{grain}}} \stackrel{0.35}{\underline{0.55}} \stackrel{0.10}{\underline{0.55}} \stackrel{22.50}{\underline{0.50}} \stackrel{0.030}{\underline{25.50}} \stackrel{0.010}{\underline{0.010}} \stackrel{0.30}{\underline{0.010}} \stackrel{0.30}{\underline{0.30}} \stackrel{3.00}{\underline{0.00}} \stackrel{0.050}{\underline{0.00}} \stackrel{0.00}{\underline{5}}_{\underline{\text{max.}}} \stackrel{0.00}{\underline{100}} \stackrel{0.00}{\underline{100}}$	
	NOTES: <u>(1) Silicon(Si) may be less than 0.10%</u> , provided total aluminum is 0.03% or <u>higher</u> , or provided acid soluble aluminum is 0.025% or higher.	

Present	Amendment	reason
	4. Heat treatment	- Interim guideline, Part II,
	 (1) The heat treatment for high manganese austenitic steel is to be hot rolled and subsequent controlled cooling as necessary. (2) Heat treatment following the final rolling process is not permitted. 	4.2 - ASTM A1106 4.3
	5. Selection of test samples	
	 (1) One test sample is to be taken from every similarly heat treated piece as rolled directly from one slab or ingot. (2) The requirements specified in Pt 2, Ch 1, 301. 6 (4) of the Rules are to be applied to the selection of the test samples. 	
	6. Selection of test specimens	
	 6. Selection of test specimens (1) Tensile test specimens are to comply with the requirements shown in (a) to (c) below: (a) Tensile test specimens are to be taken according to the requirements specified in Pt 2, Ch 1, 301. 7 (2) of the Rules. (b) Normally flat tensile test specimens are to be prepared in such a manner as to maintain the rolling scale at least at one side. (c) When instead a machined round tensile test specimen is used then the axis must be located at a position lying at a distance of t/4 from the surface or as near as possible to this position. (2) Impact test specimens are to be taken according to the requirements specified in Pt 2, Ch 1, 301. 7 (3) of the Rules. 7. Mechanical properties of high manganese austenitic steel plates are classified as specified in Table 2. 	

Present	Amendment reason
	Table 2Mechanical properties for high manganese austenitic steelplates
	Tensile test Impact test Mechanical properties Table 2
	$ \underbrace{ \begin{array}{c cccc} Grade \\ \hline Grade \\ \hline \\ $
	<u>HMN40 min. 400 800~970 22 -196 41 27</u>
	(1) When the absorbed energy of two or more test specimens among a set of test specimens is less in value than the specified average absorbed energy or when the absorbed energy of a single test specimen is less in value than 70 % of the specified average absorbed energy, the test is considered to be failed. (2) L (or T) denotes that the longitudinal axis of the test specimen is arranged parallel (or transverse) to the final direction of rolling. 8. Welding consumables for high manganese austenitic steel (1) Where no special requirements are given in 8, those as specified in Pt 2, Ch 2, 607. of the Rules apply in analogous manner. (2) Welding consumables are classified as specified in Table 3. Table 3 Grades and Marks of Welding Consumables Material for TIG Flux cored wire welding RY HMN RW HMN RY HMN RW HMN (3) Submerged arc welding consumables which have passed the tests for each welding process are to be appended with the suffixes shown in Table 4 at the end of their marks.

Present	Amendment	reason				
	Table 4 Marks					
	Welding technique Marks					
	Multi-run technique <u>M</u>					
	<u>Two-run technique</u> <u>T</u>					
	Multi-run and Two-run technique TM					
	(A) Chemical composition (a) Deposited metals of welding consumables for flux cored wire welding and submerged arc welding are to have the chemical composition given in Table 5 and Table 6 respectively. (b) TIG welding consumables are to have the chemical composition o ladle analysis value complied with the requirements as given in Table 7. Table 5 Chemical Composition of Deposited Metal for Flux Cored Wire Welding Chemical composition (%) Grade C Si Mn P S Mi Cr Mo N Other s 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	<u>f</u> <u>1</u>				
	$\frac{RW HMN}{0.5} \left \begin{array}{c} 0.2 \\ \hline 0.5 \\ \hline 1.0 \\ \hline 0 \\ \hline \end{array} \right \left \begin{array}{c} \frac{18.0}{26.} \\ \hline 0.02 \\ \hline max. \\ \hline$					
	Table 6 Chemical Composition of Deposited Metal for Submerged Arc Welding	J				
	<u>Chemical composition (%)</u>					
	$\begin{array}{ c c c c c c c } \underline{C} & \underline{Si} & \underline{Mn} & \underline{P} & \underline{S} & \underline{Ni} & \underline{Cr} & \underline{Mo} & \underline{N} & \underline{Other} \\ \underline{Si} & \underline{Mn} & \underline{P} & \underline{S} & \underline{Ni} & \underline{Cr} & \underline{Mo} & \underline{N} & \underline{Other} \\ \underline{Si} & $					
	$\frac{RUHMN}{\underline{0.6}} \frac{0.2 \sim}{\underline{0.6}} \frac{1.5}{\underline{max.}} \frac{\underline{18.0}}{\underline{26.}} \underline{0.020} \underline{0.015} \underline{3.0} \underline{5.0} \underline{2.5} \underline{0.10} \underline{max.} \underline{mx.} \underline{mx.} $					

Present			Am	endme	ent					reason
	Table 7	Table 7 Chemical Composition of Deposited Metal for TIG Electrodes								
	Grada	Grade <u>Chemical composition (%)</u>]		
		<u>C</u> <u>Si</u>	<u>Mn</u> <u>H</u>	<u>S</u>	<u>Ni</u>	<u>Cr</u>	Mo	N	Others	
	<u>RY</u> <u>HMN</u>	$\frac{\underline{0.2}}{\underline{0.5}} \frac{\underline{0.1}}{\underline{1.0}}$	$ \begin{array}{c c} \underline{18.0} \\ \underline{\sim 26.} \\ \underline{0} \end{array} \begin{array}{c} \underline{0.0} \\ \underline{\text{ma}} \end{array} $	_		<u>5.0</u> <u>max.</u>	<u>2.5</u> <u>max.</u>	<u>0.10</u> <u>max.</u>	_	
		Mechanical pr quirements in		deposite	d metal	are to	comply	y with	<u>the re</u> -	-
	Table 8 M	lechanical pro	•	Deposited						
		<u>Tensile</u> t			Charp	y V note	ch Impa	ct test		- IMO MSC.
	Yield stren (N/mm ²	strend	<u>th</u> Elor	gation %)	<u>Test ter</u> (℃)		-	absorbe gy (J)	ed_	1/Circ.1599 Annex 6.2 Table 3
	<u>400 min</u>	<u>. 660 m</u>	<u>in.</u> <u>22</u>	min.	<u>-196</u>		<u>27</u>	min.		
	Mec men <u>Table</u>					<u>st</u>				-
	Yiel				Charpy V notch Imp		Impact	<u>ict test</u>	_	
	streng (N/m)		Bend tes		<u>Te</u>	<u>st_temp.</u> (℃)		rage abs energy (
	<u>660 n</u>	nin. of withstar	pecimens are ading, withou long on the cimen or othe	crack ex outer su	ceed-	<u>-196</u>		<u>27 min</u>	<u>-</u>	

Present	Amendment	reason
	 (6) Fillet weld test Fillet weld test is to be in accordance with the requirements in Pt 2, Ch 2, 602. 7 of the Rules. 9. Welder (1) Welders for high manganese austenitic steel are to have a qualification by welder qualification test with high manganese austenitic steel specimen in accordance with Pt 2, Ch 2, Sec. 5 of the Rules. (2) Welders who engage in welding for high manganese austenitic steel is to have passed qualification test with high manganese austenitic steel. 10. Welding procedure qualification tests for high manganese austenitic steel is to be in accordance with the requirements in Pt 7, Ch 5, Sec 6 of Rules and Rules/Guidances for the Classification of Ships Using Low-flashpoint Fuels. (2) The welding procedure qualification test is carried out considering the following points. (A) Special attention is to be given to the first root pass when applying flux-cored arc welding (FCAW); reduced amperage is to be considered. And weld gas composition of FCAW is to be normally an 80/20 mix of argon and carbon dioxide. (B) Welding heat input is to be controlled equal to maximum 30 kJ/cm or below. 	10.6.2.1.1 10.6.2.3
	<u>11. Welding practice</u> (1) Distance between the weld and nozzle is to be kept to a minimum to	- IMO MSC.
	 (1) Distance between the word and hozzle is to be kept to a minimum to reduce the oxygen content at the vicinity of the weld pool. (2) Appropriate ventilation is to be provided to reduce exposure to hazardous welding fumes. (3) The edges to be welded are to be smooth, uniform and free from moisture, grease, rust and paint which may cause injurious defects in welded joints. 	10.6.2.2 10.6.2.4
	12. Marking (1) Steel plates which have satisfactorily complied with the required tests are to be marked with the identification mark in accordance with Pt 2, Ch 1, 301. 11 of the Rules. (2) Where the plates are controlled cooling : CC (e.g. : HMN40 CC)	