

36 Myeongji ocean city 9-ro, Gangseo-gu, Busan, 46762 Republic of Korea

Phone : +82-70-8799-8502 Fax : +82-70-8799-8419 E-mail : cwyum@krs.co.kr

Person in charge : Yeom Cheol-wung

To: All Surveyors and whom it may concern

No : 2019-9-E Date : 2019.10.31

Subject	9.127 Notice for Amendments to the KR Technical Rules									
Subject	(Guidance, Part 7 Annex 7–10)									
Application	05 Nov. 2019 (Date of Construction Contract)									

1. Please be informed that the partial amendments have been made to the "Guidance Relating to the Rules for the Classification of Steel Ships, Pt.7 Annex 7–10, Guidelines for Direct Strength Assessment of Ore Carriers" as below and you are kindly requested to apply these amendments on the relevant works.

= Below =

- 1) Regarding to addition of new load cases reflecting dynamic shear forces due to high GM in beam sea and application of buckling assessment method in Pt.13 (CSR).
- 2. Furthermore, please be informed that these amendments will be included in 2020 edition for Rule and Guidance on KR Classification Technical Rules which will be published in the first half of 2020.

Attachments: Amended Guidance, Part 7 Annex 7-10, 1 copy. (The End)

KR Page 1/1(E)

(Form No.: FI-03-03) (20.06.2018)

Amended Guidance for the Classification of Steel Ships

Part 7 Ships of Special Service

Annex 7-10 Guidelines for Direct Strength Assessment of Ore Carriers

Oct. 2019

- Main Amendments -

(1) Background

- Addition of new load cases reflecting dynamic shear forces due to high GM in beam sea
- Application of buckling assessment method in Pt 13 (CSR)

(2) Amendments

See Amendments Tables for Annex 7-10, Part 7

(3) Effective Date

Effective date : 05 Nov. 2019 (Date of Construction Contract)

Present	Amendments
Annex 7-10 Guidelines for Direct Strength Assessment for Ore Carriers	Annex 7-10 Guidelines for Direct Strength Assessment of Ore Carriers
1. Direct strength calculation The direct strength calculation of the ore carrier is in accordance with the Pt 3, Annex 3-2 Guidance for Direct Strength Assessment and following 1. to 9. and proceeds according to the structural analysis flow chart in Fig 1.	(1) General The direct strength calculation of the ore carrier is in accordance with (1) to (9) and proceeds according to the structural analysis flow chart in Fig 1.
(1) Structural members to be calculated The members that can determine the scantling by direct strength calculation are as follows. Bottom transverse, deck transverse, side transverse, longitudinal bulkhead transverse, cross-tie, floor, inner bottom, bottom shell, side shell, cross deck and girder.	The members that can determine the scantling by direct strength calculation are as follows. Bottom transverse, deck transverse, side transverse, longitudinal bulkhead transverse, cross-tie, floor, inner bottom, bottom shell, side shell, cross deck and girder. Gross thickness is applied for the direct strength calculation. The buckling strength is evaluated for net thickness considering the corrosion margin defined in following (7).
(2) Modelling, Loads, boundary conditions, and supporting conditions Assumed loads, structural models, boundary conditions and supporting condition for the calculation are to be as follows:	(2) Modelling
(A)The procedure of structural modelling for mid cargo hold(or tank)is to be as follows:	The procedure of structural modelling for mid cargo hold(or tank)is to be as follows:
(a) Range of analysis (refer to Fig 2)	(A) Range of analysis
(i) The analysis of the mid-cargo hold structure	(a) The analysis of the mid-cargo hold structure
(omitted)	⟨same as the current Guidance⟩
(ii) The longitudinal extent of the finite element model	(b) The longitudinal extent of the finite element model (same as the current Guidance)
〈omitted〉 (iii) The Fwd and Aft models should be	(c) The Fwd and Aft models should be
⟨omitted⟩	(same as the current Guidance)
(b) Structural modelling	(B) Structural modelling
⟨omitted⟩	<pre> ⟨same as the current Guidance⟩</pre>

Present	Amendments
	(3) Boundary condition (same as the current Guidance)
(B) Applied loads	(4) Applied loads
(i) Loads due to ore cargo, grain cargo, etc. are as fol lows;	(A) Internal loads (a) Loads due to ore cargo, grain cargo, etc. are as follows;
① The height and surface of the cargo are to be determined in accordance with below	(i) The height and surface of the cargo are to be determined in accordance with below
(see Fig 8, 9 and 10) <pre> ⟨omitted⟩</pre>	(see Fig 8, 9 and 10) ⟨same as the current Guidance⟩
(crimites)	(came as the canonic substitute)
	V_H : Volume, in m^3 , of cargo hold up to level of the intersection of the main deck with the hatch coaming excluding the volume enclosed by hatch coaming.
② The loads on the vertical walls of the hold are to be determined by the following	(ii) The loads on the vertical walls of the hold are to be determined by the following
formula. ⟨omitted⟩	formula. ⟨same as the current Guidance⟩
- In order to evaluate the total force in the vertical direction, shear loads acting on the slope plate of the bilge hopper tank and lower stool by bulk dry bulk cargo are to be	- In order to evaluate the total force in the vertical direction, shear loads acting on the slope plate of the bilge hopper tank and lower stool by bulk dry bulk cargo are to be
taken into account. The shear load acting on the sloped members by the bulk cargo in	taken into account. The shear load acting on the sloped members by the ore cargo in the
the still water is given by the following formula.	still water is given by the following formula.
$h_S = \frac{(1-K_C)(h_C + h_{DB} - z)}{\tan\beta}$ $\langle \text{omitted} \rangle$	$w_{sh} = 9.81 \gamma \frac{(1 - K_C)(h_C + h_{DB} - z)}{\tan \beta}$ (kN/m ²)
aneta $ aneta$	
	(same as the current Guidance)
(ii) Loads due to ballast water	(b) Loads due to ballast water
⟨omitted⟩	⟨same as the current Guidance⟩
(iii) Load under hydrostatic test The water head of the tank to be subjected to the hydrostatic test should be the tank	(c) Load under hydrostatic test The water head of the tank to be subjected to the hydrostatic test should be the tank top
top + 2.4 m	+ 2.4 m
(b) Hydrostatic pressure	(B) Hydrostatic pressure
The hydrostatic pressure is to be in accordance with Pt. 3 Appendix 3-2 III 1 (8).	The hydrostatic pressure is to be in accordance with Pt. 3 Annex 3-2, III 1 (8).

Present	Amendments
(c) Wave loads The wave loads are to be in accordance with Pt. 3 Appendix 3-2 III 1 (9). (d) Hull weight Consider the self weight of the hull considering gravitational acceleration. (e) Load due to upper structure If the upper structure is included in structural model, the load considered with acceleration of gravity are to be considered. If the upper structure is not included in structural model, loads on upper structure are to be distributed on relevant deck nodes. (f) Load due to the main engine The loads due to the main engine are to be distributed on relevant nodes of M/E foundation.	(C) Wave loads The wave loads are to be in accordance with Pt. 3 Annex 3-2, III 1 (9). (D) Hull weight Consider the self weight of the hull considering gravitational acceleration. (E) Load due to upper structure If the upper structure is included in structural model, the load considered with acceleration of gravity are to be considered. If the upper structure is not included in structural model, loads on upper structure are to be distributed on relevant deck nodes. (F) Load due to the main engine The loads due to the main engine are to be distributed on relevant nodes of M/E foundation.
 (C) Boundary condition and supporting condition of structural modelling (omitted) (3) Consideration of hull girder shear force (A) The hull girder shear force 	(G) Consideration of hull girder shear force (a) The hull girder shear force
(B) For mid hold, shear force is to comply with Pt 13, Ch. 7 Sec. 2 of the Rles. For Fwd and Aft hold, shear force is to comply with Pt 13, Ch. 7 Sec. 2 of the Rles.	(same as the current Guidance) (b) For mid hold, shear force is to comply with Pt 13, Sub-Pt. 1, Ch. 7 Sec. 2. For Fwd and Aft hold, shear force is to comply with Pt 13, Sub-Pt. 1, Ch. 7 Sec. 2.
(C) The direct calculation of the shear flow is to comply with Pt 13, Ch. 5 Annex 1 of the Rules.(4) Considering of hull girder bending moment	(c) The direct calculation of the shear flow is to comply with Pt 13, Sub-Pt. 1, Ch. 5, Annex 1. (H) Considering of hull girder vertical bending moment
(A) The hull girder bending moment is adjusted after adjusting the shear force.(B) In the analysis of the vertical bending moment, the target hull girder bending moment is the maximum vertical bending moment that can occur at the center of the mid hold in the finite element model. The target value of the hull girder bending moment is obtained as follows.	(a) The hull girder vertical bending moment is adjusted after adjusting the shear force. (b) In the analysis of the vertical bending moment, the target hull girder vertical bending moment is the maximum vertical bending moment that can occur at the center of the mid hold in the finite element model. The target value of the hull girder vertical bending moment is obtained as follows.
$M_{v-targ} = M_s + M_w$	$M_{v-targ} = M_s + M_w$

Present	Amendments
where M_s : vertical bending moment in still water (kNm) M_w : wave bending moment according to Pt 3, Ch . 3 Table 3.3.1 (kNm) (C) The distribution of hull girder bending moments caused by local loads applied to the model is calculated using simple beam theory in accordance with Pt . 13-1 Ch . 7 Sec. 2 of the Rles. (D) If the target vertical bending $\langle omitted \rangle$ (E) The bending moment adjustment procedure for the fore and aft part structural analysis	where M_s : vertical bending moment in still water (kNm) M_w : wave <u>vertical</u> bending moment according to Pt 3, Ch. 3 Table 3.3.1 (kNm) (c) The distribution of hull girder vertical bending moments caused by local loads applied to the model is calculated using simple beam theory in accordance with Pt. 13, <u>Sub-Pt. 1, Ch. 7, Sec. 2.</u> (d) If the target vertical bending (same as the current Guidance) (e) The vertical bending moment adjustment procedure for the fore and aft part structural
is to comply with the requirements in Pt. 13 Ch. 7 Sec. 2. and 4.4.9 of the Rules. (5) Load case	analysis is to comply with the requirements in Pt. 13, Sub-Pt. 1, Ch. 7 Sec. 2, and 4.4.9. (I) Load case (same as the current Guidance) (5) Consideration of dynamic shear loads in beam sea condition (A) General (a) In order to verify the structural integrity of transverse members under dynamic shear load due to rolling motion and high GM in beam sea condition, BSR and BSP load cases are to be applied as shown in Table 8 and Table 9. BSR and BSP load cases means as follows: - BSR-1P and BSR-2P: Beam sea EDWs that minimise and maximise the roll motion downward and upward on the port side respectively with waves from the port side.
	 BSR-1S and BSR-2S: Beam sea EDWs that maximise and minimise the roll motion downward and upward on the starboard side respectively with waves from the starboard side. BSP-1P and BSP-2P: Beam sea EDWs that maximise and minimise the hydrodynamic pressure at the waterline amidships on the port side respectively. BSP-1S and BSP-2S: Beam sea EDWs that maximise and minimise the hydrodynamic pressure at the waterline amidships on the starboard side respectively.

Present	Amendments
	(b) These BSR and BSP load cases are to be applied to homogeneous loading with $\gamma=3.0~({\rm ton/m^3})$ of high density cargo for mid hold model only. The loading pattern described in No. 1 condition of Table 5. should be applied. (B) Applied loads (a) The symbol's definitions in BSR load cases are following; $T_{\theta}: \text{The roll period, in s, is to be taken as;}$ $T_{\theta}=\frac{2.3\pi k_r}{\sqrt{gGM}}.$ where: $k_r: \text{Roll radius of gyration, in m, in the considered loading condition. 0.25B is to be adopted unless provided in the loading manual.}$ $GM: \text{Metacentric height, in m, in the considered loading condition. 0.20B is to be adopted unless provided in the loading manual.}$ $g: 9.81m/s^2$
	$\frac{\theta : \text{The roll angle, in deg, is to be taken as :}}{\theta = \frac{9000(1.25 - 0.025 T_{\theta}) f_{BK}}{(B + 75) \pi}}$ where: $\frac{f_{BK} : \text{To be taken as:}}{f_{BK} = 1.2 \text{ for ships without bilge keel.}}$ $\frac{f_{BK} = 1.0 \text{ for ships with bilge keel.}}{f_{BK} = 1.0 \text{ for ships with bilge keel.}}$
	$\frac{T_{\phi} : \text{The pitch period, in s, is to be taken as:}}{T_{\phi} = \sqrt{\frac{2.6\pi L}{g}}}$ $\frac{\Phi}{\Phi} : \text{The pitch angle, in deg, is to be taken as:}}{\Phi = 1350 \ L^{-0.94} \left\{1 + \frac{3.0}{\sqrt{gL}}\right\}}$
	$a_0 \colon \text{Acceleration parameter, to be taken as:} \\ a_0 = (1.58 - 0.47C_B) \left(\frac{2.4}{\sqrt{L}} + \frac{34}{L} - \frac{600}{L^2} \right) \\ x, y, z \colon X, Y \text{ and } Z \text{ coordinates, in } m, \text{ of the considered point at the intersection among the longitudinal plane of symmetry of ship, the aft end of L and the baseline.}$

Present	Amendments
	$\frac{R\text{: Vertical coordinate, in m, of the ship rotation centre, to be taken as:}}{R=\min\!\left(\frac{D}{4}\!+\!\frac{T_{LC}}{2},\;\frac{D}{2}\right)}$
	$\frac{T_{SC}: \text{ Scantling draught}}{f_{\beta}: \text{ Heading correction factor, to be taken as:}}$ $\frac{f_{\beta}=0.8 \text{ for BSR and BSP load cases for the extreme sea loads design load scenario.}}$
	(b) The accelerations due to ship motion are follows: Surge acceleration due to surge, in $\rm m/s^2$, is to be taken as: $a_{surge} = 0.25 \ a_0 \ g$
	Sway acceleration due to sway, in m/s², is to be taken as: $\underline{a_{sway}} = 0.55 \ a_0 \ \underline{g}$
	Heave (vertical) acceleration due to heave, in m/s 2 , is to be taken as: $a_{heave} = a_0 \ g$
	Roll acceleration, a_{roll} , in rad/s², is to be taken as: $a_{roll} = \theta \frac{\pi}{180} \left(\frac{2\pi}{T_{\theta}}\right)^2$

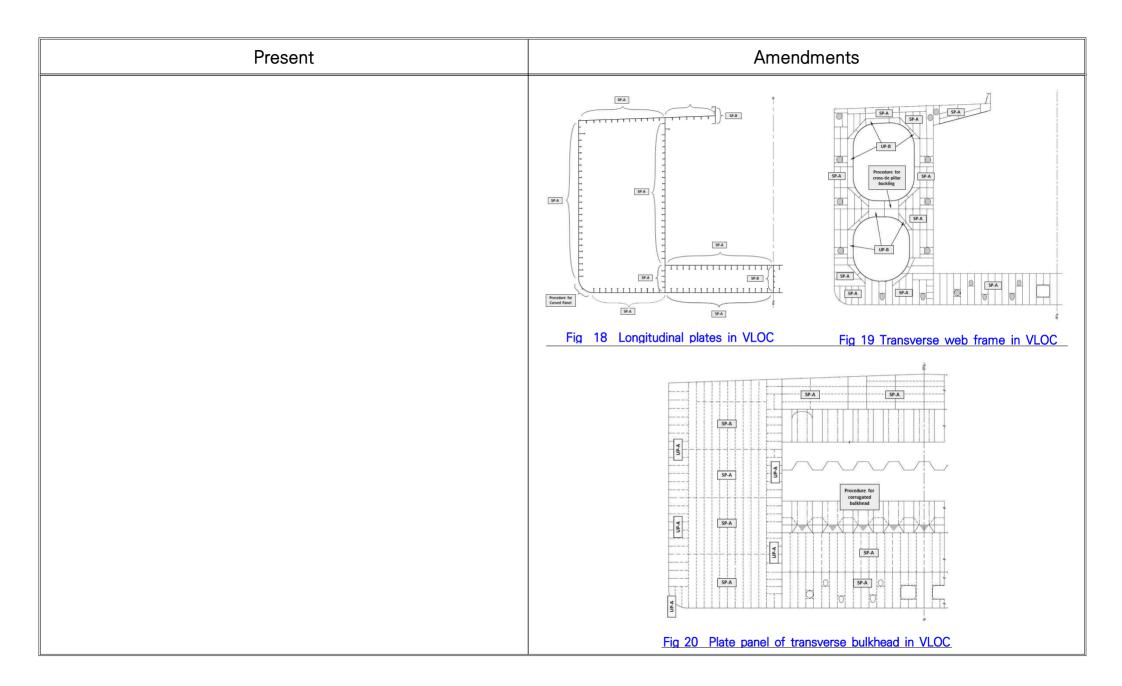

Present		Amendments										
	Table 6 Sh	nip response	s for BSR ar	nd BSP load	cases							
	Loadcase	BSR-1P	BSR-2P	BSR-1S	BSR-2S	BSP-1P	BSP-2P	BSP-1S	BSP-2S			
	EDW		BS	SR			B	SP				
	Heading		Ве	am		Beam						
	Effect		Max	roll			Max. pressure	e at waterline				
	VWBM	Sagging	Hogging	Sagging	Hogging	Sagging	Hogging	Sagging	Hogging			
	VWSF	Negative-aft Positive-fore	Positive-aft Negative-fore	Negative-aft Positive-fore	Positive-aft Negative-fore	Negative-aft Positive-fore	Positive-aft Negative-fore	Negative-aft Positive-fore	Positive-aft Negative-fore			
	HWBM	Stbd tensile	Port tensile	Port tensile	Stbd tensile	Stbd tensile	Port tensile	Port tensile	Stbd tensile			
	Surge	-	-	-	-	To bow	To stern	To bow	To stern			
	a_{surge}	-	-	-	-	43	5	43				
	Sway	To starboard	To Portside	To Portside	To starboard	To Portside	To starboard	To starboard	To Portside			
	a_{sway}	W.S L.S	W.S → L.S	L.S W.S	L.S W.S	W.S →L.S	w.s L.s	L.S W.S	L.S → W.S			
	Heave	Down	Up	Down	Up	Down	Up	Down	Up			
	a_{heave}	W.S 1	W.S L.S	L.S N.S	L.S W.S	W.S 1	W.S L.S	L.S W.S	L.S W.S			
	Roll	Portside down	Portside up	Starboard down	Starboard up	Portside up	Portside down	Starboard up	Starboard down			
	a_{roll}	W.S L.S	W.S L.S	L.S W.S	L.S W.S	W.S L.S	W.S L.S	L.S W.S	L.S W.S			
	Pitch	Bow up	Bow down	Bow up	Bow down	Bow up	Bow down	Bow up	Bow down			
	a_{pitch}	43	7	43	7	543	7	543	7			
	HWBM : Ho WS : Wear	rizontal bending ther side, side o	moment is to b	oe taken as defi sed to the inco			Pt. 3, Ch 3.	hannan an a	A			

Present	Amendments										
	Table 9 Load combination factors, LCFs for BSR and BSP load cases										
	Load comp	onent	LCF	BSR-1P	BSR-2P	BSR-1S	BSR-2S	BSP-1P	BSP-2P	BSP-1S	BSP-2S
		M_{wv}	C_{WV}	-0.1	0.1	-0.1	0.1	-0.4	0.4	-0.4	0.4
	Hull girder loads	Q_{wv}	C_{QW}	0.1	-0.1	0.1	-0.1	0.3	-0.3	0.3	-0.3
		M_{wh}	$C_{W\!H}$	0.4	-0.4	-0.4	0.4	0.4	-0.4	-0.4	0.4
		a_{surge}	C_{XS}	0.0	0.0	0.0	0.0	-0.15	0.15	-0.15	0.15
	Longitudinal accelerations	$a_{pitch-x}$	C_{XP}	0.4	-0.4	0.4	-0.4	0.45	-0.45	0.45	-0.45
	accolorations	$gsin\phi$	C_{XG}	-0.3	0.3	-0.3	0.3	-0.25	0.25	-0.25	0.25
		a_{sway}	C_{YS}	0.5	-0.5	-0.5	0.5	0.4	-0.4	-0.4	0.4
	Transverse accelerations	a_{roll-y}	$C_{Y\!R}$	1.0	-1.0	-1.0	1.0	1.0	-1.0	-1.0	1.0
	accelerations	$gsin\theta$	C_{YG}	-1.0	1.0	1.0	-1.0	-0.9	0.9	0.9	-0.9
		a_{heave}	C_{ZH}	-0.25	0.25	-0.25	0.25	0.5	-0.5	0.5	-0.5
	Vertical accelerations	a_{roll-z}	C_{ZR}	1.0	-1.0	1.0	-1.0	1.0	-1.0	-1.0	1.0
	docolorations	$a_{pitch-z}$	C_{ZP}	0.4	-0.4	0.4	-0.4	0.45	-0.45	0.45	-0.45
	Pitch accelerate $a_{pitch} = 1$ The accelerate the ship fixed eration comp	$1.5 \phi \frac{\pi}{180}$	$-\left(rac{2\pi}{T_\phi} ight)^2$ ed to conate sy	derive the	e inertial	loads at	any po: tion valu				
	The longituding	nal accel	leration	at any p	osition fo	or each	<u>dynamic</u>	load cas	se, in m	$^{\prime}$ s ² , is to	be tak-
$\frac{a_X \!=\! -C_{X\!G} g \sin \phi + C_{X\!S} a_{surge} + C_{X\!P} a_{pitch}(z \!-\! R)}{a_X \!=\! -C_{X\!G} g \sin \phi + C_{X\!S} a_{surge} + C_{X\!P} a_{pitch}(z \!-\! R)}$ The transverse acceleration at any position for each dynamic load case, in m/s², en as: $a_Y \!=\! C_{Y\!G} g \sin \theta + C_{Y\!S} a_{sway} - C_{Y\!R} a_{roll}(z \!-\! R)$ The vertical acceleration at any position for each dynamic load case, in m/s², is as: $a_Z \!=\! C_{Z\!H} a_{heave} + C_{Z\!R} a_{roll} y - C_{Z\!P} a_{pitch}(x \!-\! 0.45L)$											

Present	Amendments
	(c) Hull girder loads The wave induced vertical bending moment and shear force are to be taken as defined in (G) and (H) in (4). The horizontal wave bending moment at any longitudinal position, in kNm, is to be taken as: $ M_{wh} = f_{nlh} \left(0.31 + \frac{L}{2800} \right) f_m C_w L^2 T_{SC} C_B $ where: $ f_{nlh} : \text{Coefficient considering nonlinear effect to be taken as: } f_{nlh} = 0.9 $ $ f_{mlh} : \text{Distribution factor is to be taken as: } f_{nlh} = 0.9 $ $ f_{mlh} : \text{Distribution factor is to be taken as: } f_{nlh} = 0.9 $ $ f_{mlh} : \text{Distribution factor is to be taken as: } f_{nlh} = 0.9 $ $ f_{mlh} : \text{Distribution factor is to be taken as: } f_{nlh} = 0.9 $ $ f_{mlh} : \text{Distribution factor is to be taken as: } f_{nlh} = 0.9 $ $ f_{mlh} : \text{Distribution factor is to be taken as: } f_{nlh} = 0.9 $ $ f_{mlh} : \text{Distribution factor is to be taken as: } f_{nlh} = 0.9 $ $ f_{mlh} : \text{Distribution factor is to be taken as: } f_{nlh} = 0.9 $ $ f_{mlh} : \text{Distribution factor is to be taken as: } f_{nlh} = 0.9 $ $ f_{mlh} : \text{Distribution factor is to be taken as: } f_{nlh} = 0.9 $ $ f_{mlh} : \text{Distribution factor is to be taken as: } f_{nlh} = 0.9 $ $ f_{mlh} : \text{Distribution factor is to be taken as: } f_{nlh} = 0.9 $ $ f_{mlh} : \text{Distribution factor is to be taken as: } f_{nlh} = 0.9 $ $ f_{mlh} : \text{Distribution factor is to be taken as: } f_{nlh} = 0.9 $ $ f_{mlh} : \text{Distribution factor is to be taken as: } f_{nlh} = 0.9 $ $ f_{mlh} : \text{Distribution factor is to be taken as: } f_{nlh} = 0.9 $ $ f_{mlh} : \text{Distribution factor is to be taken as: } f_{nlh} = 0.9 $ $ f_{mlh} : \text{Distribution factor is to be taken as: } f_{nlh} = 0.9 $ $ f_{mlh} : \text{Distribution factor is to be taken as: } f_{nlh} = 0.9 $ $ f_{mlh} : \text{Distribution factor is to be taken as: } f_{nlh} = 0.9 $ $ f_{mlh} : \text{Distribution factor is to be taken as: } f_{nlh} = 0.9 $ $ f_{mlh} : \text{Distribution factor is to be taken as: } f_{nlh} = 0.9 $ $ f_{mlh} : \text{Distribution factor is the taken as: } f_{nlh} = 0.9 $ $ f_{mlh} : Distribution fa$

Present	Amendments
	Table 10 Hydrodynamic pressures for BSR load cases
	Wave pressure, in $k\mathrm{N/m}^2$
	Load case $z \leq T_{SC}$ $T_{SC} < z \leq h_W + T_{SC}$ $z > h_W + T_{SC}$
	$ \text{BSR-1P} \qquad P_{W} = \max \ (P_{BSR} , \rho g (z - T_{SC})) $
	$ \begin{array}{ c c c c c } \hline & \text{BSR-2P} & P_W = \max \ (-P_{BSR} \ , \rho g \ (z-T_{SC})) \\ \hline & \text{BSR-1S} & P_W = \max \ (P_{BSR} \ , \rho g \ (z-T_{SC})) \\ \hline \end{array} \\ P_W = P_{W,WL} - \rho g \ (z-T_{SC}) \\ \hline P_W = 0.0 \\ \hline \end{array} $
	$ \begin{array}{ c c c c c c }\hline \text{BSR-1S} & P_W = \max \ (P_{BSR} , \rho g (z-T_{SC})) \end{array} \end{array} \end{array} P_W = P_{W,WL} - \rho g (z-T_{SC}) \qquad P_W = 0.0 $
	$ \text{BSR-2S} P_{W} = \max \; (-P_{BSR} , \rho g (z-T_{SC})) $
	where: For BSR-1P and BSR-2P load cases: $P_{BSR} = f_{\beta} f_{R} f_{nl} k_{a} k_{p} \left[9 y \sin \theta + \left(-0.95 f_{yB} - 2 f_{zT} - 0.2 \right) C_{W} \sqrt{\frac{L + \lambda - 125}{L}} \right]$ For BSR-1S and BSR-2S load cases: $P_{BSR} = f_{\beta} f_{R} f_{nl} k_{a} k_{p} \left[-9 y \sin \theta + \left(-0.95 f_{yB} - 2 f_{zT} - 0.2 \right) C_{W} \sqrt{\frac{L + \lambda - 125}{L}} \right]$ $f_{R} : \text{Factor related to the operational profile, to be taken as :}$ $f_{R} = 0.85$ $f_{nl} : \text{Coefficient considering non-linear effect, to be taken as :}$ $f_{nl} = 1.0$
	$\begin{array}{ll} \frac{k_a = k_{a-WL} f_{yB} \ \ + \ k_{a-CL} \left(1 - f_{yB}\right)}{k_p = k_{p-WL} f_{yB} \ \ + \ k_{p-CL} \left(1 - f_{yB}\right)} \\ \text{Phase coefficient, } \ k_{a-WL}, \ k_{a-CL}, \ k_{p-WL} \ \text{and } \ k_{p-CL} \ \text{are to be taken as following:} \end{array}$
	Intermediate values are to be interpolated.
	- Port side of BSR-1P and BSR-2P or starboard side BSR-1S and BSR-2S
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
	k_{p-WL} 2.0 2.0 1.6 1.0 1.0 -1.0

Present	Amendments										
	- Port side	of BSR-	1S and	BSR-2S or s	tarboard	side BSR-	1P and BS	R-2P			
	f_{xL}	0		0.3 0	.5	0.65	0.8	1.0			
	k_{a-WL}	0.2	().75	l	1.1	1.0	0.8			
	f_{xL}	0.0	0.1	0.2	0.4	0.6	0.8	1.0			
	k_{p-WL}	0.95	0.9	0.7	1.0	1.0	0.9	1.0			
	- Center li										
	f_{xL}	0.0			.4	0.6	0.85	1.0			
	k_{a-CL}	1.5			.0	1.0	2.0	2.0			
	$\begin{array}{ c c c }\hline f_{xL}\\\hline k_{p-CL}\\\hline \end{array}$.0	-0.5	0.5 1.0		1.0	1.0			
	i rep - CL		,		1.0		1.5	1.0			
	f_{xL} : Ratio between X-coordinate of the load point and L, to be taken as: $f_{xL} = \frac{x}{x}$ but not to be taken less than 0.0 or greater than 1.0										
	$f_{xL} = \frac{x}{L}$, but not to be taken less than 0.0 or greater than 1.0.										
	f_{zT} : Rati	o betweer	<i>Z</i> -coo	rdinate of the	e load po	oint and T_i	$_{SC}^{\prime}$, to be to	aken as:			
				eater than 1							
	f_{yB} : Ratio	between	Y-coor	dinate of the	load po	int and B ,	to be take	en as:			
	$f_{yB} =$	$\frac{ 2y }{B_x}$, be 0 , when	ut not g	reater than 1	1.0.						
	B_x : Mould	ded breadt	h at the	e waterline, i	n m, at	the consid	ered cross	section.			
				R load case,							
	$\lambda = \frac{1}{2}$	$\frac{g}{d\pi} T_{\theta}^2$									
$\frac{P_{W,WL}: \text{Wave pressure at the waterline, kN/m}^2, \text{ for the considered dynamic l}}{P_{W,WL}=P_{BSR} \text{ for } y=B_x/2 \text{ and } z=T_{SC}}$											
		$\frac{P_{W,WL}}{\rho g}$	uivalent	to the press	ure at w	vaterline, in	m, to be	taken as:			



$\begin{array}{c} \frac{\text{owhere:}}{P_{BSP}} = 125f_{S}f_{B}f_{B}k_{b}k_{c}F_{g}C_{B}\sqrt{\frac{L+\lambda-125}{L}} \\ P_{BSP} = 125f_{S}f_{B}f_{B}k_{b}k_{c}F_{g}C_{B}\sqrt{\frac{L+\lambda-125}{L}} \\ f_{g} : \text{Factor related to the operational profile, is defined in } (d) \\ f_{g} : \text{Coefficient considering non-linear effect, is taken as:} \\ - \text{For extreme sea loads design load scenario:} \\ f_{g} = 0.8 \text{ at } f_{g} = 0.8 \\ f_{g} = 0.8 \text{ at } f_{g} = 0.3 \\ f_{g} = 0.8 \text{ at } f_{g} = 0.3 \\ f_{g} = 0.8 \text{ at } f_{g} = 0.3 \\ f_{g} = 0.8 \text{ at } f_{g} = 0.3 \\ f_{g} = 0.8 \text{ at } f_{g} = 0.3 \\ f_{g} = 0.8 \text{ at } f_{g} = 0.3 \\ f_{g} = 0.8 \text{ at } f_{g} = 0.3 \\ f_{g} = 0.8 \text{ at } f_{g} = 0.3 \\ f_{g} = 0.8 \text{ at } f_{g} = 0.3 \\ f_{g} = 0.3 \frac{z}{T_{g}} - 4f_{g0} + 0.1 \\ f_{g} = -1.3 \frac{z}{T_{g}} - 4f_{g0} + 0.1 \\ f_{g} = 1.$	Present	Amendments
$y \geq 0 \qquad \qquad f_{yz} = 10 \frac{z}{T_{SC}} + 8.5 f_{yB} + 0.1 \qquad f_{yz} = -1.3 \frac{z}{T_{SC}} - 4 f_{yB} + 0.1$ $y < 0 \qquad \qquad f_{yz} = -1.3 \frac{z}{T_{SC}} - 4 f_{yB} + 0.1 \qquad f_{yz} = 10 \frac{z}{T_{SC}} + 8.5 f_{yB} + 0.1$ $\frac{\lambda : \text{Wave length of the BSP load case, in m, to be taken as:}}{\lambda = 0.5 L}$ $\frac{k_x}{k_x} = k_{n-WL} f_{yB} + k_{n-CL} (1 - f_{yB})$ $\frac{k_y}{k_p} = k_{p-WL} f_{yB} + k_{n-CL} (1 - f_{yB})$ $\frac{k_y}{k_p} = k_{p-WL} f_{yB} + k_{n-CL} (1 - f_{yB})$ Phase coefficient, k_{n-WL} , k_{n-CL} , k_{p-WL} and k_{p-CL} are to be taken as following: Intermediate values are to be interpolated. $- \text{ Port side of BSP-1P and BSP-2P or starboard side BSP-1S and BSP-2S}$ $\frac{f_{xL}}{k_{n-WL}} = \frac{0.0}{0.3} = \frac{0.2}{0.3} = \frac{0.5}{0.5} = \frac{0.6}{0.8} = \frac{0.8}{0.9} = \frac{1}{0.5}$ $\frac{k_{n-WL}}{k_{p-WL}} = \frac{0.0}{0.0} = \frac{0.2}{0.2} = \frac{0.4}{0.9} = \frac{0.9}{0.7} = \frac{1.0}{0.5}$ $\frac{f_{xL}}{k_{p-WL}} = \frac{0.0}{0.0} = \frac{0.2}{0.9} = \frac{0.4}{0.9} = \frac{0.9}{1.0} = \frac{1.0}{0.5}$ $- \text{ Port side of BSP-1S and BSP-2S or starboard side BSP-1P and BSP-2P}$ $\frac{f_{xL}}{f_{xL}} = \frac{0.0}{0.1} = \frac{0.2}{0.2} = \frac{0.3}{0.5} = \frac{0.7}{0.8} = \frac{0.8}{1.0} = \frac{1.0}{0.5}$		$P_{BSP} = 1.25 f_{\beta} f_{R} f_{nl} k_{a} k_{p} f_{yz} C_{W} \sqrt{\frac{L + \lambda - 125}{L}}$ $f_{R} : \text{Factor related to the operational profile, is defined in (d)}$ $f_{nl} : \text{Coefficient considering non-linear effect, is taken as;}$ $- \text{For extreme sea loads design load scenario :}$ $f_{nl} = 0.6 \text{ at } f_{xL} = 0$ $f_{nl} = 0.8 \text{ at } f_{xL} = 0.3$ $f_{nl} = 0.8 \text{ at } f_{xL} = 0.7$
$y < 0 \qquad \qquad f_{yz} = -1.3 \frac{z}{T_{SC}} - 4f_{yB} + 0.1 \qquad f_{yz} = 10 \frac{z}{T_{SC}} + 8.5 f_{yB} + 0.1$ $\lambda: \text{ Wave length of the BSP load case, in m, to be taken as:} $ $\lambda = 0.5L$ $\frac{k_a}{k_p} = k_{p-NL} f_{yB} + k_{n-CL} (1 - f_{yB}) \\ k_{p} = k_{p-NL} f_{yB} + k_{n-CL} (1 - f_{yB}) \\ \text{Phase coefficient, } k_{n-NL} k_{p-L} k_{n-CL} k_{p-NL} \text{ and } k_{p-CL} \text{ are to be taken as following: Intermediate values are to be interpolated.} \\ - \text{Port side of BSP-1P and BSP-2P or starboard side BSP-1S and BSP-2S} $ $\frac{f_{xL}}{k_{n-NL}} = 0.0 0.2 0.35 0.5 0.6 0.8 0.9 1 \\ k_{n-NL} = 0.3 0.9 1.1 1.0 0.9 0.9 0.7 0.5 \\ \hline f_{xL} = 0.0 0.2 0.4 0.9 1.0 \\ \hline k_{p-NL} = 1.0 0.9 1.0 1.0 0.5 \\ \hline - \text{Port side of BSP-1S and BSP-2P} \\ \hline f_{xL} = 0 0.1 0.2 0.3 0.5 0.7 0.8 1.0 \\ \hline $		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$y \ge 0$ $f_{yz} = 10 \frac{z}{T_{SC}} + 8.5 f_{yB} + 0.1$ $f_{yz} = -1.3 \frac{z}{T_{SC}} - 4 f_{yB} + 0.1$
$\frac{\lambda = 0.5L}{k_a = k_{a-WL} f_{yB} + k_{a-CL} \left(1 - f_{yB}\right)} \\ \frac{k_a = k_{a-WL} f_{yB} + k_{a-CL} \left(1 - f_{yB}\right)}{k_p = k_{p-WL} f_{yB} + k_{p-CL} \left(1 - f_{yB}\right)} \\ \frac{k_p = k_{p-WL} f_{yB} + k_{p-CL} \left(1 - f_{yB}\right)}{k_{p-ML} + k_{p-CL} \left(1 - f_{yB}\right)} \\ \frac{k_p = k_{p-WL} f_{yB} + k_{p-CL} \left(1 - f_{yB}\right)}{k_{p-ML} + k_{p-CL} f_{yB}} \\ \frac{k_{p-WL} f_{yB} + k_{p-CL} f_{yB}}{k_{p-WL} + k_{p-CL} f_{yB}} \\ \frac{k_{p-WL} f_{yB} f_{yB}}{k_{p-WL} + k_{p-CL} f_{yB}} \\ \frac{k_{p-WL} f_{yB} f_{yB}}{k_{p-WL} + k_{p-WL} f_{yB}} \\ \frac{k_{p-WL} $		y < 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Intermediate values are to be interpolated.
		$egin{array}{ c c c c c c c c c c c c c c c c c c c$
		f_{xL} 0.0 0.2 0.4 0.9 1.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$f_{xL} = 0.0 = 0.05 = 0.2 = 0.3 = 0.4 = 0.5 = 0.6 = 0.8 = 0.9 = 1.0$

Present **Amendments** - Center line 0.0 0.2 0.4 0.6 0.85 1.0 f_{xL} k_{a-CL} 1.0 2.0 1.0 1.0 1.0 2.0 f_{xL} 0.0 0.35 0.5 0.81.0 k_{p-CL} 1.6 1.6 1.0 1.5 1.0 P_{WWZ} : Wave pressure at the waterline, kN/m², for the considered dynamic load case. $P_{W,WL} = P_{BSP}$ for $y = B_x/2$ and $z = T_{SC}$ Other parametric symbols are defined in (d). Figure 15 Transverse distribution of dynamic pressure for BSP-1P(left)와 BSP-1S(right) load cases Figure 16 Transverse distribution of dynamic pressure for BSP-2P(left)와 BSP-2S(right) load cases (e) Internal cargo loads The cargo pressure due to ore cargo acting on any load point of a cargo hold boundary, in kN/m², is to be taken as: $P_{in} = w + P_{bd}$ Static pressure, \overline{w} in kN/m², due to ore cargo is defined in (4), (A), (a) (ii). Dynamic pressure, P_{bd} in kN/m², due to ore cargo to be taken as:

Present	Amendments
	$\frac{P_{bd} = f_{\beta} \gamma \left[0.25 a_x (x_G - x) + 0.25 a_y \left(y_G - y \right) + K_C a_z \left(z_C - z \right) \right] (kN/m^2) \text{for} k = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$
	$P_{bd} = 0$ (kNm^2) , for $z > z_C$ where:
	$\frac{a_x,\ a_y,\ a_z}{x_G,y_G,z_G}$: Longitudinal, transverse and vertical accelerations, in m/s², at x_G,y_G,z_G .
	filled cargo hold, i.e. V_{Full} , considered with respect to the reference coordinate system. In case of partially filled cargo hold, x_G, y_G, z_G to be taken as follows:
	$x_G,y_G \ : \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	$\underline{z_c = h_{DB} + h_c}$
	K_C : Coefficient is defined in (4), (A), (a) (ii).
	The shear load pressures, $P_{bs-s} + P_{bs-d}$, are to be considered for the hopper tank and the lower stool plating in addition to the ore cargo pressures when the load point
	elevation, z , is lower or equal to z_c . Static shear load, P_{bs-s} , due to gravitational forces acting on hopper tanks and lower stools plating, is defined as w_{sh} of (4), (A), (a) (ii). The dynamic shear load pressure, P_{bs-d} (positive downward to the plating) due to ore
	cargo forces on the hopper tank and lower stool plating, in kN/m², is to be taken as: $P_{bs-d} = f_{\beta} \gamma a_z \frac{(1-K_C) (z_C-z)}{\tan \beta}$
	Additionally, the dynamic shear load pressures, P_{bs-dx} and P_{bs-dy} , due to ore cargo forces acting along the inner bottom plating, in kN/m ² , are to be taken as:
	$\frac{P_{bs-dx}=-0.75f_{\beta}\gamma\;a_xh_C}{P_{bs-dy}=-0.75f_{\beta}\gammaa_yh_C},\;\text{in the longitudinal direction (positive to bow)}$

Present	Amendments
(6) Allowable stresses	(6) Allowable stresses
The stress calculated by the direct strength analysis using the dimension including the	The stress calculated by the direct strength analysis using the dimension including the
corrosion margin should meet the following criteria, and the evaluation range is shown in Fig 13.	corrosion margin should meet the following criteria, and the evaluation range is shown in Fig 17.
$\sigma_{act} < \sigma_{allow}$	11g 17.
$\sigma_{act} = \sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3\tau^2}$	$\sigma_{act} < \sigma_{allow}$
$\sigma_{allow} = \eta \sigma_{yield}$	$\sigma_{act} = \sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3\tau^2}$
$\sigma_{yield} = 235/K(\text{N/mm}^2)$	$\sigma_{allow} = \eta \sigma_{yield}$
	$\sigma_{yield} = 235/K(\mathrm{N/mm}^2)$
where η : Yield strength correction factor	where;
$\eta = 0.9$, longitudinal strength member at port and navigation condition	η : Yield strength correction factor
, viv, vivgitamin con garantin an para transfer and trans	η = 0.9 : for longitudinal strength member of port condition and sea going condition defined
$\eta = 0.72$, transverse strength member at port and navigation condition	in (4) and for all structural members of load conditions defined in (5).
	$\eta = 0.72$: transverse strength member of port condition and sea going condition except
K: Material factor (see Table 8)	load cases defined in (5).
σ_x : Normal stress in x-direction of element coordinate system σ_y : Normal stress in y-direction of element coordinate system	K : Material factor (see <u>Pt.3 Annex 3-2 Table 5</u>) σ_x : Normal stress in x-direction of element coordinate system
τ : Sheer stress on the face in x-y direction of element coordinate system	σ_{y} : Normal stress in y-direction of element coordinate system\
	τ : Shear stress on the face in x-y direction of element coordinate system
(7) Buckling	(7) Buckling
	The plate panel of hull structure is to be modelled as stiffened panel, SP or unstiffened
	panel, UP. Method A and Method B as defined in Pt. 13, Sub-Pt 1, Ch. 8 are to be
The detailed calculation of buckling strength is to be in accordance with Pt. 11 Ch. 6	used according to Fig 18 to Fig 20.
Annex 1 of the Rules and the corrosion addition and judgments of buckling strength for	The detailed calculation of buckling strength is to be in accordance with Pt 13, Sub-Pt 1,
buckling evaluation are as follows;	Ch. 8 and the corrosion addition and judgments of buckling strength for buckling evalua-
	tion are as shown in Table 12 and 13. The 1.0 of buckling factor should be applied to all structural members for load cases to reflect dynamic shear loads in beam sea
⟨omitted⟩	condition defined in (5).
\	⟨same as the current Guidance⟩

Present	Amendments
(8) Local fine mesh analysis	(8) Local fine mesh analysis (A) Application
(A) The list of structural details of the fine mesh analysis are as follows.	(a) The list of structural details of the fine mesh analysis are as follows.
(a) hopper knuckle	_ hopper knuckle
(b) openings (c) connection between transverse bulkhead and longitudinal stiffener of deck and double	 openings connection between transverse bulkhead and longitudinal stiffener of deck and double
bottom	bottom
(d) connection of corrugated bulkhead and the adjacent structure	_ connection of corrugated bulkhead and the adjacent structure
(e) hatch corner	_ hatch corner
(B) For other high stress areas in which the stress (σ_{act}) calculated by direct strength	(b) For other high stress areas in which the stress (σ_{act}) calculated by direct strength anal-
analysis is greater than 95% of the allowable stress (σ_{allow}), additional analysis should be	ysis is greater than 95% of the allowable stress (σ_{allow}), additional analysis should be per-
performed at the discretion of the Society.	formed at the discretion of the Society.
	(B) Fine mesh of the structure
(C) The range of the local fine mesh analysis should be at least 10 elements in all direc-	(a) The range of the local fine mesh analysis should be at least 10 elements in all direc-
tions from the area under consideration.	tions from the area under consideration.
(D) All plates and stiffeners within the local fine mesh analysis range should be represented by shell elements.	(b) All plates and stiffeners within the local fine mesh analysis range should be represented by shell elements.
(E) For element corners, crooked elements less than 45 degrees or greater than 135 de-	(c) For element corners, crooked elements less than 45 degrees or greater than 135 de-
grees should be avoided.	grees should be avoided.
(F) The aspect ratio of the element should be kept as close as possible to 1, and should be less than 3.	(d) The aspect ratio of the element should be kept as close as possible to 1, and should be less than 3.
(G) Mesh size of local fine mesh analysis should be such that it is capable of expressing	(e) Mesh size of local fine mesh analysis should be such that it is capable of expressing
the structure well and is less than the longitudinal spacing.	the structure well and is less than the longitudinal spacing.
(H) When performing local (Omitted)	(f) When performing local ⟨same as the current Guidance⟩
Connicody	\sum as the current duidance/
	(C) Allowable stress for local fine mesh analysis
(I) Allowable stresses for local fine mesh analysis should meet the following criteria.	(a) Allowable stresses for local fine mesh analysis should meet the following criteria.
(Offitted)	/same as the current duidance/

Present	Amendments
where η : Yield strength correction factor $\eta=0.9$, longitudinal strength member of port condition and sea going condition	where; η : Yield strength correction factor as defined in (6)
$\eta=0.72$, transverse strength member of port condition and sea going condition η_{allow} : Local fine mesh analysis correction factor $\langle \text{omitted} \rangle$	η_{allow} : Local fine mesh analysis correction factor $\langle \text{same as the current Guidance} \rangle$
(J) When evaluating the corner of the opening, the average stress can be evaluated as follows. ⟨omitted⟩	(b) When evaluating the corner of the opening, the average stress can be evaluated as follows. (same as the current Guidance)
(9) Cargo Mass Curves ⟨omitted⟩	(9) Cargo Mass Curves ⟨same as the current Guidance⟩

(the end of this document)