빙해운항선박 지침 개정사항

- 주요개정내용-

- (1) 2020.07.01일자 시행사항 (건조계약일 기준)
 - 대빙등급 ID의 추진축계 설계 요건을 신설함.

현 행	개 정 안	개 정 사 유
제 1 장 대빙구조	제 1 장 대빙구조	<빙해운항선박 지침> (개정) 대빙등급 ID의 추진축
제 6 절 추진기관 <i>(2018)</i>	제 6 절 추진기관 <i>(2018)</i>	계 설계 요건 신설 <시행일 자: 2020년7월1일 이후 건조 계약되는 선박>
601. ~ 602. 〈생략〉 603. 설계 빙 조건 대빙등급에 대한 프로펠러의 빙하중을 추정하는데 있어서, 표 1.15에 주어진 것과 같이 다른 운항 형태가 고려되었다. 설계 빙하중을 추정하기 위하여, 최대 빙블록의 크기가 결정된다. 프로펠러에 들어가는 최대 설계 빙블록은 $H_{ice} \cdot 2H_{ice} \cdot 3H_{ice}$ 의 크기를 갖는 직각의 빙블록이다. 빙블록의 두께 (H_{ice}) 는 표 1.16에 주어진 것과 같다.		
표 1.15〈생략〉 표 1.16 빙블록의 두께 (H_{ice})	표 1.15〈현행과 동일〉 표 1.16 빙블록의 두께 (H_{ice})	
대빙등급 IA IB IC <u>ID</u>	대빙등급 IA IB IC Super	- ID 등급에 대한 608.가 신 설됨에 따라 ID 등급의 빙블
프로펠러에 들어가는 설계 최대 빙블록의 두께 m m m <u>m</u>	프로펠러에 들어가는 설계 최대 빙블록의 두께 m m m m	록 두께를 삭제함. (Finnish- Swedish Ice Class Rules에 도 ID, II 등급의 빙블록 두께
604. 〈생략〉	604. 〈현행과 동일〉	없음)

혂 행

개 정 안 개정사유

605. 설계하중

- 1. ~ 3. 〈생략〉
- 4. 프로펠러 날개에 작용하는 설계하중

동안에 프로펠러 날개를 후방으로 굽히려고 하는 선박사용수명 전하면서 빙블록을 분쇄하는 동안에 프로펠러 날개를 전방으로 동시에 작용하지 않는다. 그러므로 이들은 한 날개에 각각 별도 로 적용하여야 한다

- (1) ~ (8) 〈생략〉
- (9) 빙하중 사이클수

하중 스펙트럼에서 프로펠러 날개 당 하중 사이클수는 다음 식에 따른다

$$N_{ice} = k_1 \bullet k_2 \bullet k_3 \bullet N_{dass} n$$
,

대빙등급에 대한 기준 충격 사이클수 N_{doc}

대빙등급	IA Super	IΑ	IΒ	IC	ID
선박사용수명 중 발생하는 충격 사이클수/n	9 • 10 ⁶	6 • 10 ⁶	$3.4 \cdot 10^6$	2.1 • 10	<u>2.1 • 1</u> 0

(이하 생략)

605. 설계하중

- 1. ~ 3. 〈현행과 동일〉
- 4. 프로펠러 날개에 작용하는 설계하중

동안에 프로펠러 날개를 후방으로 굽히려고 하는 선박사용수명 -중 발생하는 최대의 힘이다. F_s 는 프로펠러가 전진방향으로 회|---중 발생하는 최대의 힘이다. F_s 는 프로펠러가 전진방향으로 회전 하면서 빙블록을 분쇄하는 동안에 프로펠러 날개를 전방으로 굽 _ 굽히려고 하는 선박사용수명 중 발생하는 최대의 힘이다. F,와 │ _ 히려고 하는 선박사용수명 중 발생하는 최대의 힘이다. F,와 F, - F.는 프로펠러와 빙의 서로 다른 상호작용 현상에서 비롯되며│ - 는 프로펠러와 빙의 서로 다른 상호작용 현상에서 비롯되며 동 시에 작용하지 않는다. 그러므로 이들은 한 날개에 각각 별도로 적용하여야 한다

- (1) ~ (8) 〈현행과 동일〉
- (9) 빙하중 사이클수

하중 스펙트럼에서 프로펠러 날개 당 하중 사이클수는 다음 식에 따른다

$$N_{ice} = k_1 \bullet k_2 \bullet k_3 \bullet N_{class}n$$
,

대빙등급에 대한 기준 충격 사이클수 N_{dom}

대빙등급	IA Super	IA	ΙΒ	IC
선박사용수명 중 발생하는 충격 사이클수/n	9 • 10 ⁶	6 • 10 ⁶	$3.4 \cdot 10^6$	2.1 • 10

(이하 현행과 동일)

- ID 등급에 대한 608.가 신 설됨에 따라 ID 등급의 충격 사이클수를 삭제함. (Finnish- Swedish Ice Class Rules에도 ID. II 등급 의 충격사이클 수 없음)

현 행	개 정 안	개 정 사 유
608. 〈신설〉	608. 대빙등급이 ID인 추진축계의 설계 (2020) 1. 적용 이 규정은 대빙구조의 등급이 ID인 선박의 추진축계 설계에 적용한다. 다만 이 절의 IC 등급 추진축계 설계의 일부 또는 전부를 적용할 수도 있다. 2. 프로펠러축 및 선미관축 프로펠러 축 및 선미관축의 지름은 선급 및 강선규칙 5편 3장 204.에 따라 계산된 축지름에서 5%를 증가 시킨 값 이상이어야한다. 3. 프로펠러 날개의 두께 (1) 프로펠러 날개의 두께는 선급 및 강선규칙 5편 3장 303.에 따라계산된 날개의 두께에서 8%를 증가 시킨 값 이상이어야한다.	
	$t_{0.95} = 0.14(t+57)\sqrt[3]{\frac{430}{T}}$ $t_{0.95} : 0.95R$ 에서의 프로펠러 날개의 두께 (mm) t : 선급 및 강선규칙 5편 3장 303.에 따른 프로펠러 날개 루트부의 두께(일체형: $0.25R$, 가변피치형: $0.35R$) (mm) T : 프로펠러 재료의 규격최소인장강도 (N/mm²) 4. 프로펠러의 부착 프로펠러를 키없는 프로펠러축에 압입하여 부착시키는 경우 선급 및 강선규칙 적용지침 5편 3장 305.의 2항 (다)에 따른 압입량 및 압입하중 계산식에서 F_V 를 대신해서 다음식의 F_V '를 사용하여 계산한다. $F_V = F_V + 0.15\frac{2cQ}{D}$	
(이하 생략)	(이하 현행과 동일)	