Amended Guidances for the Classification of Steel Ships (Part 2 Materials and Welding)

Dec. 2019

Effective date: 1 Jan. 2020

- (1) Date of application for certification of material & welding or the contract date for ship construction
 - To reflect Request for Establishment/Revision of Classification Technical Rules (MSC.1/Circ. 1599)

Present	Amendment
CHAPTER 1 MATERIALS	CHAPTER 1 MATERIALS
Section 1 General	Section 1 General
101. Application [See Rule]	101. Application [See Rule]
1. \sim 4. <omitted></omitted>	1. \sim 4. <sames as="" guidance="" present="" the=""></sames>
<u>5. <new></new></u>	5. The high manganese austenitic steel for cargo tank in ships carrying liquefied natural gases in bulk or for fuel tank in ships
102. ~ 109. <omitted></omitted>	using liquefied natural gases as fuels is to comply with Annex 2-11. (2020) 102. \sim 109. <sames as="" guidance="" present="" the=""></sames>
Section 2 ~ Section 8 <omitted></omitted>	
CHAPTER 2 WELDING <omitted></omitted>	Section 2 \sim Section 8 <sames as="" guidance="" present="" the=""></sames>
	CHAPTER 2 WELDING sames as the present guidance>

Present	Amendment						
Annex 2-1 ~ Annex 2-10 <omitted></omitted>	Annex 2-1 ~ Annex 2-10 <omitted></omitted>						
Annex 2-11 High manganese austenitic steel <new></new>	Annex 2-11 High manganese austenitic steel (2020)						
	 Application This Guidance applies to the high manganese austenitic steel plate(here after referred to as "high manganese austenitic steel") for cargo tank ships carrying liquefied natural gases in bulk or for fuel tank in ships us liquefied natural gases as fuels. The high manganese austenitic steel used for purposes other than (1) me be applied this Guidance with the approval of the Society. The requirements other than those specified in this Guidance are common with the requirements specified in Pt 2, Ch 1, 301. of the Rules. High manganese austenitic steel is the steel with a high amount of me ganese in order to retain austenite as its primary phase at atmospheric as service temperature. Controlled cooling is a method of cooling from high temperature in accommon and method of cooling from high temperature in accommon method from the first method of cooling from high temperature in accommon method from the first method from th						
	3. Manufacturing process						
	 Where the high manganese austenitic steel plates are manufactured from the continuous casting slabs, the maximum thickness for approval is to be determined, as a rule, with the roll ratio of 6 as standard. However, upon consideration of the manufacturing process, the roll ratio may be reduced to 4. The grade, thickness, deoxidation practice and chemical composition are to comply with the requirements given in Table 1. Table 1 Grade, Thickness, Deoxidation Practice and Chemical Composition						
	Thickne Deoxi Chemical Composition (%)						
	Grade ss, dation	<u>N</u> <u>B</u>					
	$ HMN40 $ 6 \leq t \leq 30 Fine \simeq \simeq \simeq \simeq \simeq \simeq \simeq \simeq	0.050 0.000 5 max.					
	NOTES: (1)48112con(Si) may be less than 0.10%, provided total aluminum is 0 higher, or provided acid soluble aluminum is 0.025% or higher.	<u>0.03 % or</u>					

Present		Amendment						
	Table 2 plates	Mechanical	properties	for high ma	nganese	austenitic steel		
			Tensile test	-]	Impact test		
	<u>Grade</u>	$\frac{\text{Yield}}{\text{Strength}}$ $\frac{(N/mm^2)}{}$	$\frac{\text{Tensile}}{\text{Strength}}$ $\frac{(N/mm^2)}{(N/mm^2)}$	Elongation $(L=5.65\sqrt{A})$ $(\%)$	$\frac{\frac{\text{Test}}{\text{Temp.}}}{(\mathbb{C})}$	Average Impact Energy(J) min. ⁽¹⁾ T ⁽²⁾		
	<u>HMN40</u>	min. 400	800~970	22	<u>-196</u>	<u>27</u>		
	specific the all specific (2) T der to the specific (2) T der to the specific (2) T der to the specific (2) Welding (1) Where Ch 2, (2) Welding Table 3 Material weld RY H (3) Subme welding	mens is less in bsorbed energy field average absorbed that the less in the final direction consumables no special reference footnotes and the final direction for the final di	value than the of a single test of a single test or bed energy, ongitudinal ax of rolling. for high managements are classified arks of Weld lux cored with the consumation be appending to be	the specified aver st specimen is let the test is consist of the test specimen in anganese austre given in 8, in analogous maded as specified ding Consumated welding	age absorbers in value idered to be decimen is stenitic standard those as anner. in Table Consumal submerged RUH	teel specified in Pt 2, 3. bles for welding		

Present	Amendment											
	Table 4 Marks											
	Welding technique							<u>Marks</u>				
		Multi	-run tec	<u>hnique</u>				<u>M</u>				
	Two-run technique T							<u>T</u>				
		<u>Multi</u>	-run and	l Two-rı	ın techn	<u>ique</u>		<u>TM</u>				
	(A) Chemical composition (a) Deposited metals of welding consumables for flux cored welding and submerged arc welding are to have the chemical position given in Table 5 and Table 6 respectively. (b) TIG welding consumables are to have the chemical composited analysis value complied with the requirements as given Table 7. Table 5 Chemical Composition of Deposited Metal for Flux Cored Welding Chemical composition (%)							al com- sition of given in				
		Grade	<u>C</u>	<u>Si</u>	\underline{Mn}	<u>P</u>	\underline{S}	<u>Ni</u>	<u>Cr</u>	<u>Mo</u>	<u>N</u>	Other <u>s</u>
		RW HMN	0.2~ 0.5	<u>0.2~</u> <u>1.0</u>	$ \begin{array}{r} 18.0 \\ \sim 26. \\ \hline 0 \end{array} $	0.02 max.	0.015 max.	5.0 max.	5.0 max.	2.5 max.	0.1 max.	_
		Table 6 (Chemica	al Com	position	of De	osited	Metal 1	or Sub	merged	I Arc V	Velding
						Chen	nical cor	nposition	n (%)			
		Grade	<u>C</u>	<u>Si</u>	<u>Mn</u>	<u>P</u>	<u>S</u>	<u>Ni</u>	<u>Cr</u>	<u>Mo</u>	<u>N</u>	Other <u>s</u>
		<u>RU HMN</u>	<u>0.2~</u> <u>0.6</u>	1.5 max.	$ \begin{array}{c c} \underline{18.0} \\ \sim 26. \\ \underline{0} \end{array} $	0.020 max.	0.015 max.	3.0 max.	5.0 max.	2.5 max.	0.10 max.	_

Present	Amendment										
	Table 7 C	hemic	al Com	positio	n of De	posited	Metal	for TIG	Electro	odes	
		Chemical composition (%)									
	Grade	<u>C</u>	Si	<u>Mn</u>	<u>P</u>	<u>S</u>	Ni	<u>Cr</u>	<u>Mo</u>	N	Others
		.2~ 0.5	<u>0.1∼</u> <u>1.0</u>	$ \begin{array}{r} \underline{18.0} \\ \sim 26. \\ \underline{0} \end{array} $	0.020 max.	0.015 max.	5.0 max.	5.0 max.	2.5 max.	0.10 max.	=
	वृा	iireme	ents in	Table 8	<u>8.</u>	-		are to	comply	y with	the re-
	Table 8 Mechanical properties for Deposited Metal Tensile test Charpy V notch Impact to						et test				
	Yield strengt (N/m m ²)	<u>h</u>	Tensil strengt	<u>h</u>	Elongati (%)	_	Test te			absorbed	1
	400 min.		660 mi	in.	22 min	<u>1.</u>	-196	5	<u>27</u>	min.	
	ments Table 9	in Ta	proper able 9.		r butt v						
	Yield strength	- 1	5.4			Charpy V notch					
	(N/mm	El Rend test				$\frac{\text{est temp.}}{(^{\circ}\mathbb{C})}$		rage abso energy (J			
]]						ıble	_	T		

Present	Amendment
	(6) Fillet weld test Fillet weld test is to be in accordance with the requirements in Pt 2, Ch 2, 602. 7 of the Rules. 9. Welder
	(1) Welders for high manganese austenitic steel are to have a qualification by welder qualification test with high manganese austenitic steel specimen in accordance with Pt 2, Ch 2, Sec. 5 of the Rules. (2) Welders who engage in welding for high manganese austenitic steel is to have passed qualification test with high manganese austenitic steel.
	10. Welding procedure qualification tests (1) Welding procedure qualification tests for high manganese austenitic steel is to be in accordance with the requirements in Pt 7, Ch 5, Sec 6 of Rules and Rules/Guidances for the Classification of Ships Using Low-flashpoint Fuels.

Present	Amendment							
	(2) The kinds of test and the number of test for butt welded joints is to be a shown in Table 10. Table 10 Kinds of Test for Plates with Butt Welded Joints							
	Kinds and number of specimens for test ⁽¹⁾⁽²⁾							
	Grades and material symbols of test specimens Visual test Tensile test Bend test Impact test Macrostructure test ive insp. (i)							
	NOTES: (1) Where found necessary by the Society, microscopic test, hardness test and tests other than these may be required. (2) Welding procedure test assembly is in accordance with Fig 2.2.6(RL9N490) of the Rules. (3) Two specimens are to be taken transversely and one specimen is to be taken longitudinally.(See Fig 2.2.6 of the Rules) (4) Face bend and root bend specimens are used in accordance with Pt 2, Ch 2, 404. 5 of the Rules. (5) No. of test sets and position of notch are in accordance with Pt 7, Ch 5, Sec 6 of Rules and Rules/Guidances for the Classification of Ships Using Low-flashpoint Fuels. (6) For reference (7) Non-destructive inspection for detection of internal imperfections is, in principle, to be radiographic inspection. Surface inspections by penetrant examination are to be carried out.							
	(3) The hardness test of fillet welding is for the reference.							

Present	Amendment
	 (4) The welding procedure qualification test is carried out considering the following points. (A) Special attention is to be given to the first root pass when applying flux-cored arc welding (FCAW); reduced amperage is to be considered. And weld gas composition of FCAW may be normally an 80/20 mix of argon and carbon dioxide. (B) Welding heat input is to be controlled equal to maximum 30 kJ/cm or below.
	11. Welding practice
	11. Welding practice (1) Distance between the weld and nozzle is to be kept to a minimum to reduce the oxygen content at the vicinity of the weld pool. (2) Appropriate ventilation is to be provided to reduce exposure to hazardous welding fumes. (3) The edges to be welded are to be smooth, uniform and free from moisture, grease, rust and paint which may cause injurious defects in welded joints. 12. Marking (1) Steel plates which have satisfactorily complied with the required tests are to be marked with the identification mark in accordance with Pt 2, Ch 1, 301. 11 of the Rules. (2) Where the plates are controlled cooling: CC (e.g.: HMN40 CC)